Since aerosols are important to our climate system, we seek to observe the variability of aerosol properties within cloud systems. When applied to the satellite-borne Moderate-resolution Imaging Spectroradiometer (MODIS), the Dark Target (DT) retrieval algorithm provides global aerosol optical depth (AOD at 0.55 μm) in cloud-free scenes.
View Article and Find Full Text PDFSimilarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If (1-) and (1-) are conserved where is optical thickness, the single-scattering albedo, and the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection 5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations.
View Article and Find Full Text PDFIEEE Trans Geosci Remote Sens
January 2017
The MODIS Level-2 cloud product (Earth Science Data Set names MOD06 and MYD06 for Terra and Aqua MODIS, respectively) provides pixel-level retrievals of cloud-top properties (day and night pressure, temperature, and height) and cloud optical properties (optical thickness, effective particle radius, and water path for both liquid water and ice cloud thermodynamic phases-daytime only). Collection 6 (C6) reprocessing of the product was completed in May 2014 and March 2015 for MODIS Aqua and Terra, respectively. Here we provide an overview of major C6 optical property algorithm changes relative to the previous Collection 5 (C5) product.
View Article and Find Full Text PDFAn invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model.
View Article and Find Full Text PDF