Publications by authors named "Kerry Belton"

The use of low and no calorie sweeteners (LNCSs) has increased substantially the past several decades. Their high solubility in water, low absorption to soils, and reliable analytical methods facilitate their detection in wastewater and surface waters. Low and no calorie sweeteners are widely used in food and beverage products around the world, have been approved as food additives, and are considered safe for human consumption by the United States Food and Drug Administration (USFDA) and other regulatory authorities.

View Article and Find Full Text PDF

The liver and the mammary gland have complementary metabolic roles during lactation. Substrates synthesized by the liver are released into the circulation and are taken up by the mammary gland for milk production. The aryl hydrocarbon receptor (AHR) has been identified as a lactation regulator in mice, and its activation has been associated with myriad morphological, molecular, and functional defects such as stunted gland development, decreased milk production, and changes in gene expression.

View Article and Find Full Text PDF

Hepatitis C Virus (HCV) NS4B protein has many roles in HCV genome replication. Recently, our laboratory (Q. Han, J.

View Article and Find Full Text PDF

Ccm1p is a nuclear-encoded PPR (pentatricopeptide repeat) protein that localizes into mitochondria of Saccharomyces cerevisiae. It was first defined as an essential factor to remove the bI4 [COB (cytochrome b) fourth intron)] and aI4 [COX1 (cytochrome c oxidase subunit 1) fourth intron] of pre-mRNAs, along with bI4 maturase, a protein encoded by part of bI4 and preceding exons that removes the intronic RNA sequence that codes for it. Later on, Ccm1p was described as key to maintain the steady-state levels of the mitoribosome small subunit RNA (15S rRNA).

View Article and Find Full Text PDF

Hepatitis C virus (HCV) nonstructural protein 4B (NS4B) is an integral membrane protein, which plays an important role in the organization and function of the HCV replication complex (RC). Although much is understood about its amphipathic N-terminal and C-terminal domains, we know very little about the role of the transmembrane domains (TMDs) in NS4B function. We hypothesized that in addition to anchoring NS4B into host membranes, the TMDs are engaged in intra- and intermolecular interactions required for NS4B structure/function.

View Article and Find Full Text PDF