In the heart, ageing is associated with DNA damage, oxidative stress, fibrosis and activation of the activin signalling pathway, leading to cardiac dysfunction. The cardiac effects of activin signalling blockade in progeria are unknown. This study investigated the cardiac effects of progeria induced by attenuated levels of Ercc1, which is required for DNA excision and repair, and the impact of activin signalling blockade using a soluble activin receptor type IIB (sActRIIB).
View Article and Find Full Text PDFReactive oxygen species (ROS) play a key role in development of heart failure but, at a cellular level, their effects range from cytoprotection to induction of cell death. Understanding how this is regulated is crucial to develop novel strategies to ameliorate only the detrimental effects. Here, we revisited the fundamental hypothesis that the level of ROS per se is a key factor in the cellular response by applying different concentrations of HO to cardiomyocytes.
View Article and Find Full Text PDFDetermination of cellular neutral lipid levels in yeast is important for both the biotechnology industry and biomedical research. However, many of the currently available methods are labor intensive and time consuming. Here we describe a rapid and repeatable method for the detection of neutral lipids, which can be utilized in both oleaginous and non-oleaginous yeast species.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
August 2016
With aging, there is a decline in cardiac function accompanying increasing risk of arrhythmias. These effects are likely to be mechanistically associated with age-associated changes in calcium regulation within cardiac myocytes. Previous studies suggest that lifelong exercise can potentially reduce age-associated changes in the heart.
View Article and Find Full Text PDFInvestigation of yeast neutral lipid accumulation is important for biotechnology and also for modelling aberrant lipid metabolism in human disease. The Nile red (NR) method has been extensively utilised to determine lipid phenotypes of yeast cells via microscopic means. NR assays have been used to differentiate lipid accumulation and relative amounts of lipid in oleaginous species but have not been thoroughly validated for phenotype determination arising from genetic modification.
View Article and Find Full Text PDF