Publications by authors named "Kerri Thai"

Background: Sodium glucose linked transporter 2 (SGLT2) inhibition not only reduces morbidity and mortality in patients with diagnosed heart failure but also prevents the development of heart failure hospitalization in those at risk. While studies to date have focused on the role of SGLT2 inhibition in left ventricular failure, whether this drug class is efficacious in the treatment and prevention of right heart failure has not been explored.

Hypothesis: We hypothesized that SGLT2 inhibition would reduce the structural, functional, and molecular responses to pressure overload of the right ventricle.

View Article and Find Full Text PDF
Article Synopsis
  • SGLT2 inhibitors like dapagliflozin are being studied for their protective effects on the kidneys in diabetic patients, particularly regarding how they influence oxygen levels within different regions of the kidney.
  • The study measured kidney oxygen tension and other related factors in diabetic rats to understand the effects of SGLT2 inhibition on various kidney regions.
  • Results showed that while superficial kidney regions maintained oxygen levels, deeper regions experienced significant oxygen reduction, leading to changes in kidney function and increased production of erythropoietin.
View Article and Find Full Text PDF

Aim: The use of animal models to predict the response to new therapies in humans is a vexing issue in nephrology. Unlike patients with chronic kidney disease (CKD), few rodent models develop a progressive decline in glomerular filtration rate (GFR) so that experimental studies frequently report a reduction in proteinuria as the primary efficacy outcome. Moreover, while humans present with established kidney disease that continues to progress, many experimental studies investigate therapies in the prevention rather than in a therapeutic setting.

View Article and Find Full Text PDF

Sensing changes in blood oxygen content ([Formula: see text]) is an important physiological role of the kidney; however, the mechanism(s) by which the kidneys sense and respond to changes in [Formula: see text] are incompletely understood. Accurate measurements of kidney tissue oxygen tension ([Formula: see text]) may increase our understanding of renal oxygen-sensing mechanisms and could inform decisions regarding the optimal fluid for intravascular volume resuscitation to maintain renal perfusion. In some clinical settings, starch solution may be nephrotoxic, possibly due to inadequacy of tissue oxygen delivery.

View Article and Find Full Text PDF

Background And Aims: Sodium-glucose linked cotransporter-2 (SGLT2) inhibitors reduce the likelihood of hospitalization for heart failure and cardiovascular death in both diabetic and non-diabetic individuals with reduced ejection fraction heart failure. Because SGLT2 inhibitors lead to volume contraction with reductions in both preload and afterload, these load-dependent factors are thought to be major contributors to the cardioprotective effects of the drug class. Beyond these effects, we hypothesized that SGLT2 inhibitors may also improve intrinsic cardiac function, independent of loading conditions.

View Article and Find Full Text PDF

Glomerular filtration rate (GFR) declines with age such that the prevalence of chronic kidney disease is much higher in the elderly. SIRT1 is the leading member of the sirtuin family of NAD -dependent lysine deacetylases that mediate the health span extending properties of caloric restriction. Since reduction in energy intake has also been shown to decrease age-related kidney disease in rodents, we hypothesized that a diminution in SIRT1 activity would accelerate the GFR decline and structural injury with age.

View Article and Find Full Text PDF

Recent studies send an unambiguous signal that the class of agents known as sodium-glucose-linked co-transporter-2 inhibitors (SGLT2i) prevent heart failure hospitalization in patients with type 2 diabetes. However, the mechanisms remain unclear. Herein the authors utilize a rodent model of heart failure with preserved ejection fraction (HFpEF), and demonstrate that treatment with the SGLT2i empagliflozin, reduces left ventricular mass, improving both wall stress and diastolic function.

View Article and Find Full Text PDF

The excessive accumulation of extracellular matrix material in the kidney is a histopathologic hallmark of diabetic kidney disease that correlates closely with declining function. Although considerable research has focused on the role of profibrotic factors, comparatively little attention has been paid to the possibility that a diminution in endogenous antifibrotic factors may also contribute. Among the latter, the ELR CXC chemokines, CXCL9, CXCL10, and CXCL11, have been shown to provide a stop signal to prevent excessive fibrosis.

View Article and Find Full Text PDF

The NAD-dependent lysine deacetylase, Sirtuin 1 (SIRT1), plays a central role in metabolic regulation. With type 1 diabetes a disease that is characterised by metabolic dysregulation, we sought to assess the impact of SIRT1 activation in experimental, streptozotocin (STZ)-induced diabetes. CD1 mice with and without STZ-induced diabetes were randomized to receive the SIRT1 activating compound, SRT3025, or vehicle over 20 weeks.

View Article and Find Full Text PDF

Background: Inhibiting both type 1 and 2 sodium-glucose linked cotransporter (SGLT1/2) offers the potential to not only increase glucosuria beyond that seen with selective SGLT2 inhibition alone but to reduce glucose absorption from the gut and to thereby also stimulate glucagon-like peptide 1 secretion. However, beyond the kidney and gut, SGLT1 is expressed in a range of other organs particularly the heart where it potentially assists GLUT-mediated glucose transport. Since cardiac myocytes become more reliant on glucose as a fuel source in the setting of stress, the present study sought to compare the effects of dual SGLT1/2 inhibition with selective SGLT2 inhibition in the normal and diseased heart.

View Article and Find Full Text PDF

Aims: Transforming growth factor β1 (TGF-β1) is a prosclerotic cytokine involved in cardiac remodelling leading to heart failure (HF). Acetylation/de-acetylation of specific lysine residues in Smad2/3 has been shown to regulate TGF-β signalling by altering its transcriptional activity. Recently, the lysine de-acetylase sirtuin 1 (SIRT1) has been shown to have a cardioprotective effect; however, SIRT1 expression and activity are paradoxically reduced in HF.

View Article and Find Full Text PDF

Cardiac fibrosis is a common finding in patients with chronic kidney disease. Here, we investigate the cardio-renal effects of theracurmin, a novel formulation of the polyphenolic compound curcumin, in a rat model of chronic kidney disease. Briefly, Sprague-Dawley rats were randomized to undergo sham or subtotal nephrectomy (SNx) surgery.

View Article and Find Full Text PDF

Most forms of chronic, progressive kidney disease are characterized by fibrosis whereby the prototypical prosclerotic growth factor, transforming growth factor β (TGF-β), is thought to play a pivotal role. With the recent understanding that TGF-β's canonical signaling pathway may be modified by acetylation as well as phosphorylation, we explored the role of the NAD-dependent lysine deacetylase, sirtuin 1 (SIRT1) in fibrogenesis in the cell culture, animal model, and human settings. In vitro, the increase in collagen production that results from TGF-β1 stimulation was ameliorated by the allosteric modifier of Sirt1 deacetylase, SRT3025, in association with a reduction in Smad3 reporter activity.

View Article and Find Full Text PDF

Hypothesis/introduction: Renal fibrovascular injury often persists in chronic kidney disease patients treated with renin-angiotensin system blockers. Intriguingly, early outgrowth cell-derived factor infusion also inhibits chronic renal injury. We sought to determine whether early outgrowth cell-derived factor administration provides further renoprotection when added to renin-angiotensin system blockade.

View Article and Find Full Text PDF

Fibrosis and inflammation are closely intertwined injury pathways present in nearly all forms of CKD for which few safe and effective therapies exist. Slit glycoproteins signaling through Roundabout (Robo) receptors have been described to have anti-inflammatory effects through regulation of leukocyte cytoskeletal organization. Notably, cytoskeletal reorganization is also required for fibroblast responses to TGF-β Here, we examined whether Slit2 also controls TGF-β-induced renal fibrosis.

View Article and Find Full Text PDF

Discovery of common pathways that mediate both pancreatic β-cell function and end-organ function offers the opportunity to develop therapies that modulate glucose homeostasis and separately slow the development of diabetes complications. Here, we investigated the in vitro and in vivo effects of pharmacological agonism of the prostaglandin I2 (IP) receptor in pancreatic β-cells and in glomerular podocytes. The IP receptor agonist MRE-269 increased intracellular 3',5'-cyclic adenosine monophosphate (cAMP), augmented glucose-stimulated insulin secretion (GSIS), and increased viability in MIN6 β-cells.

View Article and Find Full Text PDF

Bone marrow-derived cells were demonstrated to improve organ function, but the lack of cell retention within injured organs suggests that the protective effects are due to factors released by the cells. Herein, we tested cell therapy using early outgrowth cells (EOCs) or their conditioned media (CM) to protect the retina of diabetic animal models (type 1 and type 2) and assessed the mechanisms by in vitro study. Control and diabetic (db/db) mice (8 weeks of age) were randomized to receive a unique intravenous injection of 5×105EOCs or 0.

View Article and Find Full Text PDF

Pharmacological inhibition of the proximal tubular sodium-glucose linked cotransporter-2 (SGLT2) leads to glycosuria in both diabetic and non-diabetic settings. As a consequence of their ability to modulate tubuloglomerular feedback, SGLT2 inhibitors, like agents that block the renin-angiotensin system, reduce intraglomerular pressure and single nephron GFR, potentially affording renoprotection. To examine this further we administered the SGLT2 inhibitor, dapagliflozin, to 5/6 (subtotally) nephrectomised rats, a model of progressive chronic kidney disease (CKD) that like CKD in humans is characterised by single nephron hyperfiltration and intraglomerular hypertension and where angiotensin converting enzyme inhibitors and angiotensin receptor blockers are demonstrably beneficial.

View Article and Find Full Text PDF

Background: Bone marrow-derived early outgrowth cells (EOCs) secrete soluble factors that exert potent renoprotective effects, such that infusion of their conditioned medium recapitulates the affects of the cells themselves.

Objectives: The objective of this study is to test whether the protective effect of conditioned medium infusion wanes with time and whether tachyphylaxis occurs with repeated administration.

Design: This is a placebo-controlled animal study.

View Article and Find Full Text PDF

Epigenetic regulation of oxidative stress is emerging as a critical mediator of diabetic nephropathy. In diabetes, oxidative damage occurs when there is an imbalance between reactive oxygen species generation and enzymatic antioxidant repair. Here, we investigated the function of the histone methyltransferase enzyme enhancer of zeste homolog 2 (EZH2) in attenuating oxidative injury in podocytes, focusing on its regulation of the endogenous antioxidant inhibitor thioredoxin interacting protein (TxnIP).

View Article and Find Full Text PDF

Cell-based regenerative therapies offer a new alternative approach to the treatment of chronic disease. Specifically, studies by our laboratory and others have shown that a subpopulation of cells derived from the bone marrow, known as early outgrowth cells (EOCs), are able to attenuate the progression of chronic kidney disease (CKD). In this study we examined the efficacy of a tissue engineering system, in which EOCs were embedded into submillimeter-sized collagen cylinders.

View Article and Find Full Text PDF

Background: In addition to degrading glucagon-like peptide-1 (GLP-1), dipeptidyl peptidase-4 (DPP-4) inactivates several chemokines, including stromal cell-derived factor-1α (SDF-1α), a pro-angiogenic and cardiomyocyte protective protein. We hypothesized that DPP-4 inhibition may confer benefit following myocardial infarction (MI) in the diabetic setting as a consequence of enhanced SDF-1α availability rather than potentiating GLP-1. To test this we compared the effects of saxagliptin with those of liraglutide and used the SDF-1α receptor (CXCR4) antagonist plerixafor.

View Article and Find Full Text PDF

Aims/hypothesis: Nutrient overabundance and diminished physical activity underlie the epidemic of obesity and its consequences of insulin resistance and type 2 diabetes. These same phenomena, obesity and insulin resistance, are also observed in mammals as they ready themselves for the nutrient deprivation of winter, yet their plasma glucose does not rise. Given the role of silent information regulator 2 (Sir2) and its mammalian orthologue, Sirt1, in survival and life extension during energy deprivation, we hypothesised that enhancing its activity may reduce the insensible energy loss engendered by hyperglycaemia and glycosuria.

View Article and Find Full Text PDF

Binding of the receptor CXCR4 to its ligand stromal cell-derived factor 1 (SDF-1) promotes cell survival and is under the influence of a number of regulatory processes including enzymatic ligand inactivation by endopeptidases such as matrix metalloproteinase 9 (MMP-9). In light of the pivotal role that the SDF-1/CXCR4 axis plays in renal development and in the pathological growth of renal cells, we explored the function of this pathway in diabetic rats and in biopsies from patients with diabetic nephropathy, hypothesizing that the pro-survival effects of CXCR4 in resident cells would attenuate renal injury. Renal CXCR4 expression was observed to be increased in diabetic rats, whereas antagonism of the receptor unmasked albuminuria and accelerated tubular epithelial cell death.

View Article and Find Full Text PDF

Increased reactive oxygen species (ROS) are traditionally viewed as arising from the metabolic flux of diabetes, although reduction in the activity of anti-oxidant systems has also been implicated. Among the latter is the major thiol reducing thioredoxin system, the activity of which may be diminished by high glucose-induced expression of its endogenous inhibitor, thioredoxin interacting protein (TxnIP). We assessed TxnIP mRNA/protein expression along with thioredoxin activity in human right atrial biopsy specimens from subjects with and without diabetes undergoing coronary artery grafting.

View Article and Find Full Text PDF