Background: Human acellular dermal matrix (HADM) is commonly used to provide coverage and support for breast reconstruction. The primary purpose of this study was to evaluate the complication rates associated with breast reconstruction procedures when performed in conjunction with multiple types of HADM in a consecutive series.
Methods: After receiving institutional review board approval, medical records from a single surgeon were retrospectively reviewed for 126 consecutive patients (170 breasts and 211 procedures) who received a breast reconstruction or revision with implantation of HADM between 2012 and 2014.
The purpose of this study was to compare the osteogenic potential of a synthetic and a demineralized bone matrix (DBM) putty using a cranial defect model in New Zealand white rabbits. Paired, bilateral critical-size defects (10 mm) were prepared in the frontal bones of 12 rabbits and filled with either OsteoSelect DBM Putty or NovaBone calcium-phosphosilicate putty. At days 43 and 91, 6 rabbits were killed and examined via semiquantitative histology and quantitative histomorphometry.
View Article and Find Full Text PDFThe existence of sex-based differences in tendon and ligament injury rates has led investigators to test the hypothesis that sex plays a significant role in modulating tendon and ligament composition and material properties. To date, no studies have attempted to characterize how such differences develop during the course of normal tissue maturation and growth. Thus, the primary aim of the present study was to use a murine model to test the hypothesis that sex-based differences in the normal age-related development of tendon composition and material properties exist by assessing these parameters in the Achilles and tail tendons from 4-, 6-, 9-, 12-, and 15-week-old male and female C57Bl/6J mice.
View Article and Find Full Text PDFThree members of the growth/differentiation factor (GDF) subfamily of bone morphogenetic proteins (BMPs), GDFs-5, -6, and -7, have demonstrated the potential to augment tendon and ligament repair. To gain further insight into the in vivo role of these molecules, previous studies have characterized intact and healing tendons in mice with functional null mutations in GDF-5 and -7. The primary goal of the present study was to perform a detailed characterization of the intact tendon phenotype in 4- and 16-week-old male and female GDF6-/- mice and their +/+ littermates.
View Article and Find Full Text PDFIncreasing evidence suggests that the growth/differentiation factors, GDFs 5, 6, and 7 in particular, may play a role in tendon and ligament biology. Mice with genetic mutations in Gdf5 have altered tendon composition and mechanical behavior, whereas animals with functional null mutations in Gdf7 have a more subtle tendon phenotype. The present study demonstrates for the first time that a null mutation in Gdf6 is associated with substantially lower levels of tail tendon collagen content (-33%) in 4-week-old male mice, which has direct functional consequences for the mechanical integrity of the tissue (45-50% reduction in material properties).
View Article and Find Full Text PDFThe subfamily of growth/differentiation factors (GDFs) known as GDFs 5, 6, and 7 appears to be involved in tendon maintenance and repair, although the precise nature of this role has yet to be elucidated. The aim of the present study was to examine the role of GDF-7 in tendon maintenance by studying tail tendon fascicle gene expression, composition, and material property strain rate dependency in 16-week-old male and female GDF-7 deficient mice. GDF-7 deficiency did not affect the biochemical composition of tail tendon fascicles, nor did it significantly affect the tensile material properties obtained at either slow (5%/s) or fast (50%/s) strain rates.
View Article and Find Full Text PDFAnat Rec (Hoboken)
January 2008
Recent evidence has shown that mice deficient in the NPY Y2 receptor have an increase in trabecular bone volume as well as cortical bone mass due to increased osteoblast activity. However, the mechanical phenotype of Y2 -/- bone has not yet been assessed. Thus, the aim of the present study was to examine the effect of Y2 deletion on murine cortical bone structural behavior, as well as to assess the material and geometric contributions to that behavior.
View Article and Find Full Text PDF