Acta Crystallogr F Struct Biol Commun
March 2020
Tau proteins play an important role in the proper assembly and function of neurons. Hyperphosphorylation of tau by kinases such as tau tubulin kinase (TTBK) has been hypothesized to cause the aggregation of tau and the formation of neurofibrillary tangles (NFTs) that lead to the destabilization of microtubules, thereby contributing to neurodegenerative diseases such as Alzheimer's disease (AD). There are two TTBK isoforms with highly homologous catalytic sites but with distinct tissue distributions, tau phosphorylation patterns and loss-of-function effects.
View Article and Find Full Text PDFPhospholipase D enzymes (PLDs) are ubiquitous phosphodiesterases that produce phosphatidic acid (PA), a key second messenger and biosynthetic building block. Although an orthologous bacterial Streptomyces sp. strain PMF PLD structure was solved two decades ago, the molecular basis underlying the functions of the human PLD enzymes (hPLD) remained unclear based on this structure due to the low homology between these sequences.
View Article and Find Full Text PDFForming the proper number of synapses is crucial for normal neuronal development. We found that loss of function of the phosphoinositide phosphatase mtm-6 results in a reduction in the number of synaptic puncta. The reduction in synapses is partially the result of MTM-6 regulation of the secretion of the Wnt ligand EGL-20 from cells in the tail and partially the result of neuronal action.
View Article and Find Full Text PDFIn neuronal processes, microtubules (MTs) provide structural support and serve as tracks for molecular motors. While it is known that neuronal MTs are more stable than MTs in non-neuronal cells, the molecular mechanisms underlying this stability are not fully understood. In this study, we used live fluorescence microscopy to show that the C.
View Article and Find Full Text PDFBackground: The sequestration of Muscleblind splicing regulators results in myotonic dystrophy. Previous work on Muscleblind has largely focused on its roles in muscle development and maintenance due to the skeletal and cardiac muscle degeneration phenotype observed in individuals with the disorder. However, a number of reported nervous system defects suggest that Muscleblind proteins function in other tissues as well.
View Article and Find Full Text PDF