Publications by authors named "Kerkis A"

Acute renal failure (ARF) is a common renal disease that can lead to high mortality. Recovery from ARF occurs with the replacement of necrotic tubular cells by functional tubular epithelial cells and the normalization of microvascular endothelial cell function in the peritubular capillaries. Conventional therapeutic techniques are often ineffective against ARF.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) due to their self-renewal potential and differentiation capacity are useful for tissue regeneration. Immunomodulatory and trophic properties of MSCs were demonstrated suggesting their use as medicinal signaling cells able to positively change local environment in injured tissue. Equine endometrosis is a progressive degenerative disease responsible for glandular alterations and endometrial fibrosis which causes infertility in mares.

View Article and Find Full Text PDF

Animal venoms comprise a naturally selected cocktail of bioactive peptides/proteins and other molecules, each of which playing a defined role thanks to the highly specific interactions with diverse molecular targets found in the prey. Research focused on isolation, structural, and functional characterizations of novel natural biologics (bioactive peptides/proteins from natural sources) has a long way to go through from the basic science to clinical applications. Herein, we overview the structural and functional characteristics of the myoneurotoxin crotamine, firstly isolated from the South American rattlesnake venom.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs), because of their immunomodulation and trophic activities, in addition to their capacity to regenerate damaged tissues, have potential for treatment of many diseases. The success of stem cell therapies depends, in part, on the method of cell delivery, which should provide wide cell distribution and homing in to injured sites. The objective of the present study was to developing a novel strategy for delivery of MSCs into the uterus of mares with endometrosis (degenerative alteration of uterine glands and surrounding stroma).

View Article and Find Full Text PDF

Dental pulp (DP) can be extracted from child's primary teeth (deciduous), whose loss occurs spontaneously by about 5 to 12 years. Thus, DP presents an easy accessible source of stem cells without ethical concerns. Substantial quantities of stem cells of an excellent quality and at early (2-5) passages are necessary for clinical use, which currently is a problem for use of adult stem cells.

View Article and Find Full Text PDF

Objectives: Selective anticancer cell activity for both cell-penetrating and cationic antimicrobial peptides has previously been reported. As crotamine possesses activities similar to both of these, this study investigates crotamine's anticancer toxicity in vitro and in vivo.

Research Design And Methods: In vitro cancer cell viability was evaluated after treatment with 1 and 5 μg/ml of crotamine.

View Article and Find Full Text PDF

Marfan syndrome is an autosomal dominant disease of connective tissue caused by mutations in the fibrillin-1 encoding gene FBN1. Patients present cardiovascular, ocular and skeletal manifestations, and although being fully penetrant, MFS is characterized by a wide clinical variability both within and between families. Here we describe a new mouse model of MFS that recapitulates the clinical heterogeneity of the syndrome in humans.

View Article and Find Full Text PDF

Importance Of The Field: Molecules isolated from animals, insects, plants or microorganisms can provide prototypes for design of biopharmaceutical products. Some venom toxins and their derivatives are used in medicine, while others provide templates for development of new drugs.

Areas Covered In This Review: The mild toxin, crotamine, a small basic low-molecular-weight polypeptide purified from the venom of a South American rattlesnake, Crotalus durissus terrificus.

View Article and Find Full Text PDF

Purpose: Evaluate the bone tissue recovery following transplantation of ovine mesenchymal stem cells (MSC) from bone marrow and human immature dental-pulp stem cells (hIDPSC) in ovine model of induced osteonecrosis of femoral head (ONFH).

Methods: Eight sheep were divided in three experimental groups. First group was composed by four animals with ONFH induced by ethanol through central decompression (CD), for control group without any treatment.

View Article and Find Full Text PDF

Innumerous protocols, using the mouse embryonic stem (ES) cells as model for in vitro study of neurons functional properties and features, have been developed. Most of these protocols are short lasting, which, therefore, does not allow a careful analysis of the neurons maturation, aging, and death processes. We describe here a novel and efficient long-lasting protocol for in vitro ES cells differentiation into neuronal cells.

View Article and Find Full Text PDF

Purpose: To determine the outcome of the use of a tissue-engineered cell sheet composed of human undifferentiated immature dental pulp stem cells (hIDPSC) for ocular surface reconstruction in an animal model of total limbal stem cell deficiency (LSCD).

Methods: LSCD was induced by the application of 0.5 M NaOH to the right eye of rabbits for 25 seconds (mild chemical burn [MCB]) and for 45 seconds (severe chemical burn [SCB]).

View Article and Find Full Text PDF

The fusion of embryonic stem (ES) cells with differentiated somatic cells is an approach that reverses a somatic cell nucleus to a state of pluripotency. The resulting ES-somatic cell hybrids (ES-SCH) retain most of the properties of ES cells: differentiate into multiple cell types and have the ability to produce embryoid bodies (EB) and chimeras. However, it is still unknown whether ES-SCH will be able to complete the differentiation into germ cells (GC) in vitro similar to ES cells.

View Article and Find Full Text PDF

Objectives: Limbal stem cells (LSC) are self-renewing, highly proliferative cells in vitro, which express a set of specific markers and in vivo have the capacity to reconstruct the entire corneal epithelium in cases of ocular surface injury. Currently, LSC transplantation is a commonly used procedure in patients with either uni- or bilateral total limbal stem cells deficiency (TLSCD). Although LSC transplantation holds great promise for patients, several problems need to be overcome.

View Article and Find Full Text PDF

Objectives: In this study, we aimed at determining whether human immature dental pulp stem cells (hIDPSC) would be able to contribute to different cell types in mouse blastocysts without damaging them. Also, we analysed whether these blastocysts would progress further into embryogenesis when implanted to the uterus of foster mice, and develop human/mouse chimaera with retention of hIDPSC derivates and their differentiation.

Materials And Methods: hIDPSC and mouse blastocysts were used in this study.

View Article and Find Full Text PDF

In horses, stem cell therapies are a promising tool to the treatment of many injuries, which are common consequences of athletic endeavor, resulting in high morbidity and often compromising the performance. In spite of many advantages, the isolation of stem cells similar to human, from equine adipose tissue, occurred only recently. The aim of this study was to isolate equine adipose tissue-derived progenitor cells (eAT-PC), to characterize their proliferative potential, and to study their differentiation capacity before and after cryopreservation.

View Article and Find Full Text PDF

Crotamine, one of the main toxic components of Crotalus durissus terrificus venom, is a small non-enzymatic basic polypeptide, which causes hind limb paralysis and necrosis of muscle cells. It is well-known that several toxins penetrate into the cytosol through endocytosis, although in many cases the mechanism by which this occurs has not been fully investigated. Recently, using low concentrations of crotamine, we demonstrated the uptake of this toxin into actively proliferative cells via endocytosis, an event that ensues crotamine binding to cell membrane heparan sulfate proteoglycans.

View Article and Find Full Text PDF

Background: The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression.

Methods: Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections.

View Article and Find Full Text PDF

The main aim of this study is to evaluate the capacity of human dental pulp stem cells (hDPSC), isolated from deciduous teeth, to reconstruct large-sized cranial bone defects in nonimmunosuppressed (NIS) rats. To our knowledge, these cells were not used before in similar experiments. We performed two symmetric full-thickness cranial defects (5 x 8 mm) on each parietal region of eight NIS rats.

View Article and Find Full Text PDF

Pioneer work in male mouse embryonic stem (ES) cells differentiation into germ cells (GC) showed generations of male or female gametes in separate experiments, using genetically manipulated or preselected ES cells. In an attempt to produce both types of gametes from male mouse ES cells without any genetic manipulation or preselection, we induce the differentiation by retinoic acid (RA) within nonadherent embryoid bodies (EB). It seems that gamete-like cell formation occurs in the correct manner based on the expression of early and late GC-specific genes such as Oct-4, Mvh, Stella, Dazl, Piwil 2, Pdrd 1, Rex 14, Rnf 17, Bmp8b, Acrosin, Stra-8, Haprin, LH-R, Gdf9, Zp3, Zp2, Sycp1, and Sycp3.

View Article and Find Full Text PDF

Recently we have shown that crotamine, a toxin from the South American rattlesnake Crotalus durissus terrificus venom, belongs to the family of cell-penetrating peptides. Moreover, crotamine was demonstrated to be a marker of centrioles, of cell cycle, and of actively proliferating cells. Herein we show that this toxin at non-toxic concentrations is also capable of binding electrostatically to plasmid DNA forming DNA-peptide complexes whose stabilities overcome the need for chemical conjugation for carrying nucleic acids into cells.

View Article and Find Full Text PDF

In order to increase the amount of available bone where dental implants must be placed, the present study has associated platelet-rich plasma (PRP) and mononuclear cells (MNCs) from bone marrow aspirate and bone scaffold (BS) in 32 patients aged between 45 and 75 years old. The MNC attainment and the adherence to the BS were confirmed through histology, cell culture, and scanning electron microscopy. The clinical results, analyzed by computed tomography, have showed that the scaffolds were well integrated and adapted to the cortical bone.

View Article and Find Full Text PDF

We report the isolation of a population of immature dental pulp stem cells (IDPSC), which express embryonic stem cell markers Oct-4, Nanog, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81 as well as several other mesenchymal stem cell markers during at least 25 passages while maintaining the normal karyotype and the rate of expansion characteristic of stem cells. The expression of these markers was maintained in subclones obtained from these cells. Moreover, in vitrothese cells can be induced to undergo uniform differentiation into smooth and skeletal muscles, neurons, cartilage, and bone under chemically defined culture conditions.

View Article and Find Full Text PDF

Different approaches have been developed for the introduction of macromolecules, proteins and DNA into target cells. Viral (retroviruses, lentiviruses, etc.) and nonviral (liposomes, bioballistics etc.

View Article and Find Full Text PDF

Fibrillin-rich microfibrils are extracellular assemblies that impart structural properties to the connective tissue. To elucidate the contribution of fibrillin-rich microfibrils to organogenesis, we have examined the vascular phenotype of a newly created strain of mice that completely lacks fibrillin-1 and the consequences of combined deficiency of fibrillins 1 and 2 on tissue formation. The results demonstrated that fibrillins 1 and 2 perform partially overlapping functions during aortic development.

View Article and Find Full Text PDF