Publications by authors named "Keri A McKiernan"

CLC-2 is a voltage-gated chloride channel that is widely expressed in mammalian tissues. In the central nervous system, CLC-2 appears in neurons and glia. Studies to define how this channel contributes to normal and pathophysiological function in the central nervous system raise questions that remain unresolved, in part due to the absence of precise pharmacological tools for modulating CLC-2 activity.

View Article and Find Full Text PDF

This work reports a dynamical Markov state model of CLC-2 "fast" (pore) gating, based on 600 microseconds of molecular dynamics (MD) simulation. In the starting conformation of our CLC-2 model, both outer and inner channel gates are closed. The first conformational change in our dataset involves rotation of the inner-gate backbone along residues S168-G169-I170.

View Article and Find Full Text PDF

Markov state models (MSMs) are a powerful framework for the analysis of molecular dynamics data sets, such as protein folding simulations, because of their straightforward construction and statistical rigor. The coarse-graining of MSMs into an interpretable number of macrostates is a crucial step for connecting theoretical results with experimental observables. Here we present the minimum variance clustering approach (MVCA) for the coarse-graining of MSMs into macrostate models.

View Article and Find Full Text PDF

Beta-hairpins are substructures found in proteins that can lend insight into more complex systems. Furthermore, the folding of beta-hairpins is a valuable test case for benchmarking experimental and theoretical methods. Here, we simulate the folding of CLN025, a miniprotein with a beta-hairpin structure, at its experimental melting temperature using a range of state-of-the-art protein force fields.

View Article and Find Full Text PDF

Two-pore domain potassium (K2P) channel ion conductance is regulated by diverse stimuli that directly or indirectly gate the channel selectivity filter (SF). Recent crystal structures for the TREK-2 member of the K2P family reveal distinct "up" and "down" states assumed during activation via mechanical stretch. We performed 195 μs of all-atom, unbiased molecular dynamics simulations of the TREK-2 channel to probe how membrane stretch regulates the SF gate.

View Article and Find Full Text PDF

The increasing availability of high-quality experimental data and first-principles calculations creates opportunities for developing more accurate empirical force fields for simulation of proteins. We developed the AMBER-FB15 protein force field by building a high-quality quantum chemical data set consisting of comprehensive potential energy scans and employing the ForceBalance software package for parameter optimization. The optimized potential surface allows for more significant thermodynamic fluctuations away from local minima.

View Article and Find Full Text PDF

We present a united-atom model (gb-fb15) for the molecular dynamics simulation of hydrated liquid-crystalline dipalmitoylphosphatidylcholine (DPPC) phospholipid bilayers. This model was constructed through the parameter-space minimization of a regularized least-squares objective function via the ForceBalance method. The objective function was computed using a training set of experimental bilayer area per lipid and deuterium order parameter.

View Article and Find Full Text PDF