Publications by authors named "Kerensa McElroy"

Many Drosophila species differ widely in their distributions and climate niches, making them excellent subjects for evolutionary genomic studies. Here, we have developed a database of high-quality assemblies for 46 Drosophila species and one closely related Zaprionus. Fifteen of the genomes were newly sequenced, and 20 were improved with additional sequencing.

View Article and Find Full Text PDF

Phaeobacter inhibens 2.10 is an effective biofilm former on marine surfaces and has the ability to outcompete other microorganisms, possibly due to the production of the plasmid-encoded secondary metabolite tropodithietic acid (TDA). P.

View Article and Find Full Text PDF

We surveyed mitochondrial, autosomal, and Z chromosome diversity within and between the Copperback Quail-thrush and Chestnut Quail-thrush , which together span the arid and semi-arid zones of southern Australia, and primarily from specimens held in museum collections. We affirm the recent taxonomic separation of the two species and then focus on diversity within the more widespread of the two species, . To guide further study of the system and what it offers to understanding the genomics of the differentiation and speciation processes, we develop and present a hypothesis to explain mitonuclear discordance that emerged in ourdata.

View Article and Find Full Text PDF

2.10 is an effective biofilm former and colonizer of marine surfaces and has the ability to outcompete other microbiota. During biofilm dispersal 2.

View Article and Find Full Text PDF

Local adaptation of a species can affect community composition, yet the importance of local adaptation compared with species presence per se is unknown. Here we determine how a compost bacterial community exposed to elevated temperature changes over 2 months as a result of the presence of a focal bacterium, Pseudomonas fluorescens SBW25, that had been pre-adapted or not to the compost for 48 days. The effect of local adaptation on community composition is as great as the effect of species presence per se, with these results robust to the presence of an additional strong selection pressure: an SBW25-specific virus.

View Article and Find Full Text PDF

Generation of genetic diversity is a prerequisite for bacterial evolution and adaptation. Short-term diversification and selection within populations is, however, largely uncharacterised, as existing studies typically focus on fixed substitutions. Here, we use whole-genome deep-sequencing to capture the spectrum of mutations arising during biofilm development for two Pseudomonas aeruginosa strains.

View Article and Find Full Text PDF

Deep sequencing harnesses the high throughput nature of next generation sequencing technologies to generate population samples, treating information contained in individual reads as meaningful. Here, we review applications of deep sequencing to pathogen evolution. Pioneering deep sequencing studies from the virology literature are discussed, such as whole genome Roche-454 sequencing analyses of the dynamics of the rapidly mutating pathogens hepatitis C virus and HIV.

View Article and Find Full Text PDF

Background: Deep sequencing is a powerful tool for assessing viral genetic diversity. Such experiments harness the high coverage afforded by next generation sequencing protocols by treating sequencing reads as a population sample. Distinguishing true single nucleotide variants (SNVs) from sequencing errors remains challenging, however.

View Article and Find Full Text PDF

Pseudomonas aeruginosa strain 18A is a clinical, nonclonal isolate retrieved from the sputum of a chronically infected cystic fibrosis patient. The genome of 18A was sequenced for comparison with environmental and clinical isolates to identify genes that might facilitate its persistence during infection.

View Article and Find Full Text PDF

Direct sequencing of environmental DNA (metagenomics) has a great potential for describing the 16S rRNA gene diversity of microbial communities. However current approaches using this 16S rRNA gene information to describe community diversity suffer from low taxonomic resolution or chimera problems. Here we describe a new strategy that involves stringent assembly and data filtering to reconstruct full-length 16S rRNA genes from metagenomicpyrosequencing data.

View Article and Find Full Text PDF

Background: GemSIM, or General Error-Model based SIMulator, is a next-generation sequencing simulator capable of generating single or paired-end reads for any sequencing technology compatible with the generic formats SAM and FASTQ (including Illumina and Roche/454). GemSIM creates and uses empirically derived, sequence-context based error models to realistically emulate individual sequencing runs and/or technologies. Empirical fragment length and quality score distributions are also used.

View Article and Find Full Text PDF

Norovirus (NoV) is an emerging RNA virus that has been associated with global epidemics of gastroenteritis. Each global epidemic arises with the emergence of novel antigenic variants. While the majority of NoV infections are mild and self-limiting, in the young, elderly, and immunocompromised, severe and prolonged illness can result.

View Article and Find Full Text PDF

Hepatitis C is a pandemic human RNA virus, which commonly causes chronic infection and liver disease. The characterization of viral populations that successfully initiate infection, and also those that drive progression to chronicity is instrumental for understanding pathogenesis and vaccine design. A comprehensive and longitudinal analysis of the viral population was conducted in four subjects followed from very early acute infection to resolution of disease outcome.

View Article and Find Full Text PDF

Collagen-like proteins containing glycine-X-Y repeats have been identified in several pathogenic bacteria potentially involved in virulence. Recently, a collagen-like surface protein, Pcl1a, was identified in Pasteuria ramosa, a spore-forming parasite of Daphnia. Here we characterise 37 novel putative P.

View Article and Find Full Text PDF

Pasteuria ramosa is a spore-forming bacterium that infects Daphnia species. Previous results demonstrated a high specificity of host clone/parasite genotype interactions. Surface proteins of bacteria often play an important role in attachment to host cells prior to infection.

View Article and Find Full Text PDF