Publications by authors named "Keren Sinik"

Chimeric antigen receptors (CARs) are immunoreceptors that redirect T cells to selectively kill tumor cells. Given their clinical successes in hematologic malignancies, there is a strong aspiration to advance this immunotherapy for solid cancers; hence, molecular CAR design and careful target choice are crucial for their function. To evaluate the functional significance of the biophysical properties of CAR binding (i.

View Article and Find Full Text PDF

Short-lived protein translation products are proposed to be a major source of substrates for major histocompatibility complex (MHC) class I antigen processing and presentation; however, a direct link between protein stability and the presentation level of MHC class I-peptide complexes has not been made. We have recently discovered that the peptide Tyr((369-377)) , derived from the tyrosinase protein is highly presented by HLA-A2 on the surface of melanoma cells. To examine the molecular mechanisms responsible for this presentation, we compared characteristics of tyrosinase in melanoma cells lines that present high or low levels of HLA-A2-Tyr((369-377)) complexes.

View Article and Find Full Text PDF

Peptide Ags presented by class I MHC molecules on human melanomas and that are recognized by CD8(+) T cells are the subjects of many studies of antitumor immunity and represent attractive candidates for therapeutic approaches. However, no direct quantitative measurements exist to reveal their expression hierarchy on the cell surface. Using novel recombinant Abs which bind these Ags with a peptide-specific, MHC-restricted manner, we demonstrate a defined pattern of expression hierarchy of peptide-HLA-A2 complexes derived from three major differentiation Ags: gp100, Melan-A/Mart-1, and tyrosinase.

View Article and Find Full Text PDF

CTLs act as the effector arm of the cell-mediated immune system to kill undesirable cells. Two processes regulate these effector cells to prevent self reactivity: a thymic selection process that eliminates autoreactive clones and a multistage activation or priming process that endows them with a license to kill cognate target cells. Hitherto no subsequent regulatory restrictions have been ascribed for properly primed and activated CTLs that are licensed to kill.

View Article and Find Full Text PDF