Olivocochlear efferent neurons originate in the superior olivary complex of the brainstem and terminate within sensory cell regions of the organ of Corti. Components of this complex include the lateral olivocochlear bundle whose unmyelinated axons synapse with radial afferent dendrites below inner hair cells and the medial olivocochlear bundle, from which myelinated axons form a direct synaptic contact with outer hair cells. gamma-Aminobutyric acid (GABA), a major neurotransmitter of the central nervous system believed to be responsible for most fast-inhibitory transmissions, has been demonstrated with interspecies variation between mammal and primate auditory efferents.
View Article and Find Full Text PDFThe two most abundant proteins of the organ of Corti, OCP1 and OCP2, are acidic, cytosolic, low molecular weight proteins diffusely distributed within the cytoplasm of supporting cells. A recent study by Henzl et al. (2001) found first, that these two proteins co-localize with connexin 26 along the epithelial gap junction system and second, that OCP2 could participate with OCP1 in an organ of Corti-specific SCF complex (Skp1, cul1in, and Fbp), a ubiquitin ligase complex.
View Article and Find Full Text PDFDifferent neuroactive substances have been found in the efferent pathways of both the olivocochlear and vestibular systems. In the present study, the distribution and role of three neurotransmitters, choline acetyltransferase (ChAT), gamma aminobutyric acid (GABA), and enkephalin were investigated in the human labyrinth of 4 normal-hearing individuals. Immunohistochemical studies in human inner ear research, however, face a problem of procuring well-preserved specimens with maintained neurotransmitter antigenicity and morphology.
View Article and Find Full Text PDFCalcitonin gene-related peptide (CGRP) is a neuropeptide widely distributed in the peripheral and central nervous system. Demonstrated in the efferent systems of the mammalian cochlea and vestibule, immunoreactive patterns of CGRP may vary by species. There is, however, no information in the literature investigating CGRP localization in the human cochlea.
View Article and Find Full Text PDF