Publications by authors named "Keren Jiang"

Aqueous zinc (Zn) chemistry features intrinsic safety, but suffers from severe irreversibility, as exemplified by low Coulombic efficiency, sustained water consumption and dendrite growth, which hampers practical applications of rechargeable Zn batteries. Herein, we report a highly reversible aqueous Zn battery in which the graphitic carbon nitride quantum dots additive serves as fast colloid ion carriers and assists the construction of a dynamic & self-repairing protective interphase. This real-time assembled interphase enables an ion-sieving effect and is found actively regenerate in each battery cycle, in effect endowing the system with single Zn conduction and constant conformal integrality, executing timely adaption of Zn deposition, thus retaining sustainable long-term protective effect.

View Article and Find Full Text PDF

Along with sexual maturity, the liver undergoes numerous metabolic processes to adapt the physiological changes associated with egg-laying in hens. However, mechanisms regulating the processes were unclear. In this study, comparative hepatic proteome and acetyl-proteome between pre- and peak-laying hens were performed.

View Article and Find Full Text PDF

Hard carbon (HC) is a promising anode material for sodium-ion batteries, but the performance remains unsatisfactory and the sodiation mechanism in HC is one of the most debated topics. Here, from self-assembled cellulose nanocrystal sheets with crystallographic texture, unique HC nanosheets with vertically oriented (002) planes are fabricated and used as a model HC to investigate the sodiation mechanisms using synchrotron scanning transmission X-ray microscopy (STXM) coupled with analytical transmission electron microscopy (TEM). The model HC simplifies the 3D sodiation in a typical HC particle into a 2D sodiation, which facilitates the visualization of phase transformation at different states of charge.

View Article and Find Full Text PDF

Background: Estrogen plays an essential role in female development and reproductive function. In chickens, estrogen is critical for lipid metabolism in the liver. The regulatory molecular network of estrogen in chicken liver is poorly understood.

View Article and Find Full Text PDF

Egg-laying performance is one of the most important economic traits in the poultry industry. Commercial layers can lay one egg almost every day during their peak-laying period. However, many Chinese indigenous chicken breeds show a relatively low egg-laying rate, even during their peak-laying period.

View Article and Find Full Text PDF

The emopamil binding protein (EBP) is an important enzyme participating in the final steps of cholesterol biosynthesis in mammals. A predictive gene , which encodes the protein with a high identity to human EBP, was found in chicken genome. No regulatory mechanisms and biological functions of have been characterized in chickens.

View Article and Find Full Text PDF

Long chain acyl-CoA synthetases (ACSLs), which drive the conversion of long chain fatty acid into acyl-CoA, an ingredient of lipid synthesis, have been well-acknowledged to exert an indispensable role in many metabolic processes in mammals, especially lipid metabolism. However, in chicken, the evolutionary characteristics, expression profiles and regulatory mechanisms of ACSL gene family are rarely understood. Here, we analyzed the genomic synteny, gene structure, evolutionary event and functional domains of the ACSL gene family members using bioinformatics methods.

View Article and Find Full Text PDF

Techniques for scaling-up the direct-current (dc) triboelectricity generation in MoS multilayer-based Schottky nanocontacts are vital for exploiting the nanoscale phenomenon for real-world applications of energy harvesting and sensing. Here, we show that scaling-up the dc output can be realized by using various MoS multilayer-based heterojunctions including metal/semiconductor (MS), metal/insulator (tens of nanometers)/semiconductor (MIS), and semiconductor/insulator (a few nanometers)/semiconductor (SIS) moving structures. It is shown that the tribo-excited energetic charge carriers can overcome the interfacial potential barrier by different mechanisms, such as thermionic emission, defect conduction, and quantum tunneling in the case of MS, MIS, and SIS moving structures.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) play important roles in transcriptional and posttranscriptional regulation. However, the effects of lncRNAs on the meat quality of chicken hasn't been elucidated clearly yet. Gushi chickens are popular in China because of their superior meat quality, particularly the tender flesh, and unique flavor.

View Article and Find Full Text PDF

Although the generation of mechanical stress in the anode material is suggested as a possible reason for electrode degradation and fading of storage capacity in batteries, only limited knowledge of the electrode stress and its evolution is available at present. Here, we show real-time monitoring of the interfacial stress of a few-layer MoS system under the sodiation/desodiation process using microcantilever electrodes. During the first sodiation with a voltage plateau of 1.

View Article and Find Full Text PDF

Mechanical signaling involved in molecular interactions lies at the heart of materials science and biological systems, but the mechanisms involved are poorly understood. Here we use nanomechanical sensors and intact human cells to provide unique insights into the signaling pathways of connectivity networks, which deliver the ability to probe cells to produce biologically relevant, quantifiable and reproducible signals. We quantify the mechanical signals from malignant cancer cells, with 10 cells per ml in 1000-fold excess of non-neoplastic human epithelial cells.

View Article and Find Full Text PDF

The growing need to prevent pathogen outbreaks is irrefutable in the case of the food industry. Early detection in products, especially beverages, contaminated with bacterial strains is vital to avoid infected foods from reaching the consumer. If E.

View Article and Find Full Text PDF

The direct conversion of mechanical energy into electricity by nanomaterial-based devices offers potential for green energy harvesting . A conventional triboelectric nanogenerator converts frictional energy into electricity by producing alternating current (a.c.

View Article and Find Full Text PDF

Spontaneous self-assemblies of biomolecules can generate geometrical patterns. Our findings provide an insight into the mechanism of self-assembled ring pattern generation by human serum albumin (HSA). The self-assembly is a process guided by kinetic and thermodynamic parameters.

View Article and Find Full Text PDF

Apolipoprotein B (ApoB) is a major protein component of plasma lipoproteins. It is involved in many important biological processes such as lipid transportation, enzyme activity regulation, and receptor recognition. Extensive studies have shown that the expression of ApoB is regulated at multiple levels.

View Article and Find Full Text PDF

The elongation of very long chain fatty acids protein 6 (ELOVL6) encodes a fatty acid elongase that is responsible for the final step in endogenous saturated fatty acid synthesis and involves in de novo lipogenesis. Though the regulatory mechanism of ELOVL6 expression has been studied extensively, little is known about the role of miRNA in regulating ELOVL6 gene expression in chicken until now. To investigate the regulatory mechanism of miRNA on the expression of ELOVL6 gene, bioinformatics analysis was employed to predict the potential miRNAs that binding with the 3'untranslated region (3'UTR) of ELOVL6.

View Article and Find Full Text PDF

A conjugated polymer interface consisting of an oxaborole containing polymer and a glycopolymer was used for achieving very high selectivity in dopamine (DA) detection. The optimum binding affinity between the polymers promotes the selectivity to DA through a displacement mechanism while remaining unaffected by other structurally related analogs and saccharide derivatives. Real-time detection of DA with very high selectivity and sensitivity has been demonstrated by immobilizing the polymer conjugates on surface plasmon resonance (SPR) and microcantilever (MCL) sensor platforms.

View Article and Find Full Text PDF

Poultry meat quality is associated with breed, age, tissue and other factors. Many previous studies have focused on distinct breeds; however, little is known regarding the epigenetic regulatory mechanisms in different age stages, such as DNA methylation. Here, we compared the global DNA methylation profiles between juvenile (20 weeks old) and later laying-period (55 weeks old) hens and identified candidate genes related to the development and meat quality of breast muscle using whole-genome bisulfite sequencing.

View Article and Find Full Text PDF

Ligand-directed targeting and capturing of cancer cells is a new approach for detecting circulating tumor cells (CTCs). Ligands such as antibodies have been successfully used for capturing cancer cells and an antibody based system (CellSearch(®)) is currently used clinically to enumerate CTCs. Here we report the use of a peptide moiety in conjunction with a microcantilever array system to selectively detect CTCs resulting from cancer, specifically breast cancer.

View Article and Find Full Text PDF

We employed a direct peptide-bacteria binding assay to screen peptide fragments for high and specific binding to Listeria monocytogenes. Peptides were screened from a peptide array library synthesized on cellulose membrane. Twenty four peptide fragments (each a 14-mer) were derived from three potent anti-listerial peptides, Leucocin A, Pediocin PA1, and Curvacin A, that belong to class IIa bacteriocins.

View Article and Find Full Text PDF

Broad-spectrum biosensing technologies examine sensor signals using biomarkers, such as proteins, DNA, antibodies, specific cells, and macromolecules, based on direct- or indirect-conformational changes. Here, we have investigated the pH-dependent conformational isomerization of human serum albumin (HSA) using microcantilevers as a sensing platform. Native and denatured proteins were immobilized on cantilever surfaces to understand the effect of pH on conformational changes of the protein with respect to the coupling ligand.

View Article and Find Full Text PDF

Real-time, label-free detection of Gram-positive bacteria with high selectivity and sensitivity is demonstrated using an interdigitated impedimetric array functionalized with naturally produced antimicrobial peptide from class IIa bacteriocins. The antimicrobial peptide, leucocin A, was chemically synthesized and covalently immobilized on interdigitated gold microelectrodes via the interaction between the C-terminal carboxylic acid of the peptide and free amines of a preattached thiolated linker. Exposing the peptide sensor to various concentrations of Gram-positive bacteria generated reproducible impedance spectra that detected peptide-bacteria interactions at a concentration of 1 cell/μL.

View Article and Find Full Text PDF

A two-step synthetic process is reported to fabricate porous ceria membranes by anodization of cerium metal foils with subsequent calcination. "Ribbon-like" structures were found to form the backbones of these porous frameworks. The hydrophobic nature of these membranes was revealed by water contact angle measurements.

View Article and Find Full Text PDF