Repurposing discarded cells stands as a groundbreaking paradigm shift in sustainable biotechnology, with profound implications across diverse industrial sectors. Our study proposes a transformative concept by harnessing histone proteins from discarded CHO cells to produce bioactive peptides. We systematically isolated and hydrolyzed histones using Trypsin and Neutrase enzymes, optimizing reaction conditions.
View Article and Find Full Text PDFArtemisia herba-alba (AHA) is a traditionally used plant to treat various diseases, including diabetes and metabolic dysfunctions. Plant extracts are generally explored empirically without a deeper assessment of their mechanism of action. Here, we describe a combinatorial study of biochemical, molecular, and bioinformatic (metabolite-protein pharmacology network) analyses to elucidate the mechanism of action of AHA and shed light on its multilevel effects in the treatment of diabetes-related advanced glycation end-products (AGE)-induced liver damages.
View Article and Find Full Text PDFThe construction of a rapid and easy immunofluorescence bioassay for SARS-CoV-2 detection is described. We report for the first time a novel one-pot synthetic approach for simultaneous photoinduced step-growth polymerization of pyrene (Py) and ring-opening polymerization of ε-caprolactone (PCL) to produce a graft fluorescent copolymer PPy-g-PCL that was conjugated to SARS-CoV-2-specific antibodies using EDC/NHS chemistry. The synthesis steps and conjugation products were fully characterized using standard spectral analysis.
View Article and Find Full Text PDFThe increasing mutation frequency of the SARS-CoV-2 virus and the emergence of successive variants have made correct diagnosis hard to perform. Developing efficient and accurate methods to diagnose infected patients is crucial to effectively mitigate the pandemic. Here, we developed an electrochemical immunosensor based on SARS-CoV-2 antibody cocktail-conjugated magnetic nanoparticles for the sensitive and accurate detection of the SARS-CoV-2 virus and its variants in nasopharyngeal swabs.
View Article and Find Full Text PDFSupply shortage for the development and production of preventive, therapeutic, and diagnosis tools during the COVID-19 pandemic is an important issue affecting the wealthy and poor nations alike. Antibodies and antigens are especially needed for the production of immunological-based testing tools such as point-of-care tests. Here, we propose a simple and quick magnetic nanoparticle (MNP)-based separation/isolation approach for the repurposing of infected human samples to produce specific antibodies and antigen cocktails.
View Article and Find Full Text PDFThe global pandemic of COVID-19 continues to be an important threat, especially with the fast transmission rate observed after the discovery of novel mutations. In this perspective, prompt diagnosis requires massive economical and human resources to mitigate the disease. The current study proposes a rational design of a colorimetric lateral flow immunoassay (LFA) based on the repurposing of human samples to produce COVID-19-specific antigens and antibodies in combination with a novel dye-loaded polymersome for naked-eye detection.
View Article and Find Full Text PDF