Arabidopsis (Arabidopsis thaliana) HISTONE DEACETYLASE 6 (HDA6) and HISTONE DEMETHYLASES LSD-LIKE 1 (LDL1) and LDL2 synergistically regulate the expression of long non-coding RNAs associated with H3Ac and H3K4me2. The underlying mechanisms of such highly coordinated interactions among genetic and epigenetic factors contributing to this collaborative regulation remain largely unclear. We analyzed all transposable elements (TEs) across the Arabidopsis genome and the individual and combined roles of HDA6 and LDL1/LDL2 by dissecting multilayered epigenomes and their association with transcription.
View Article and Find Full Text PDFThe intense collision between marine and terrestrial agents results in the dual-source (marine and terrigenous) characteristics of marine source rocks. Our research quantitatively assessed terrestrial organic matter and revealed the crucial role of terrestrial organic materials in the organic matter enrichment of lower Miocene to upper Oligocene marine source rocks in the Qiongdognnan Basin. The quantitative assessment was achieved using partial least-squares analysis with eight biomarker parameters associated with -alkanes, isoprenoids, bicadinanes, taraxerane, tricyclic terpanes, and gammacerane.
View Article and Find Full Text PDFThe histone lysine (K) demethylase 4 (KDM4/JHDM3) subfamily of jumonji domain-containing demethylases (JMJs) has been implicated in various aspects of plant development. However, their involvement in regulating the ripening of fleshy fruits remains unclear. In this study, we identified SlJMJ3, a member of the KDM4/JHDM3 family, as an H3K27me3 demethylase in tomato (Solanum lycopersicum) that plays an important role in fruit ripening regulation.
View Article and Find Full Text PDFRoad defect detection is a crucial aspect of road maintenance projects, but traditional manual methods are time-consuming, labor-intensive, and lack accuracy. Leveraging deep learning frameworks for object detection offers a promising solution to these challenges. However, the complexity of backgrounds, low resolution, and similarity of cracks make detecting road cracks with high accuracy challenging.
View Article and Find Full Text PDFArabidopsis telomeric repeat binding factors (TRBs) can bind telomeric DNA sequences to protect telomeres from degradation. TRBs can also recruit Polycomb Repressive Complex 2 (PRC2) to deposit tri-methylation of H3 lysine 27 (H3K27me3) over certain target loci. Here, we demonstrate that TRBs also associate and colocalize with JUMONJI14 (JMJ14) and trigger H3K4me3 demethylation at some loci.
View Article and Find Full Text PDFThe Arabidopsis H3K9 methyltransferases KRYPTONITE/SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG 4 (KYP/SUVH4), SUVH5 and SUVH6 are redundantly involved in silencing of transposable elements (TEs). Our recent study indicated that KYP/SUVH5/6 can directly interact with the histone deacetylase HDA6 to synergistically regulate TE expression. However, the function of KYP/SUVH5/6 in plant development is still unclear.
View Article and Find Full Text PDFHistone deacetylases (HDAs) regulate many aspects of plant development and responses to environmental changes. Previous studies have demonstrated that the Arabidopsis histone deacetylase HDA15 is a positive regulator in far-red (FR) light-mediated inhibition of hypocotyl elongation. Furthermore, HDA15 can be phosphorylated and its enzymatic activity is negatively regulated by phosphorylation.
View Article and Find Full Text PDFArabidopsis (Arabidopsis thaliana) FLOWERING LOCUS C (FLC) acts as a key flowering regulator by repressing the expression of the floral integrator FLOWERING LOCUS T (FT). Prolonged exposure to cold (vernalization) induces flowering by reducing FLC expression. The long noncoding RNAs (lncRNAs) COOLAIR and COLDAIR, which are transcribed from the 3' end and the first intron of FLC, respectively, are important for FLC repression under vernalization.
View Article and Find Full Text PDFHistone deacetylases (HDAs) play an important role in transcriptional regulation of multiple biological processes. In this study, we investigated the function of HDA15 in abscisic acid (ABA) responses. We used immunopurification coupled with mass spectrometry-based proteomics to identify proteins interacting with HDA15 in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFLeaf senescence is controlled by a complex regulatory network in which robustness is ensured by the activity of transcription factors and epigenetic regulators. However, how these coordinate the process of leaf senescence remains poorly understood. We found that WHIRLY1 interacts with Histone Deacetylase (HDA)15, a Reduced Potassium Dependence3 (RPD3)/HDA1-type HDA, by using green fluorescent protein-nanotrap-mass spectrum assays.
View Article and Find Full Text PDFMULTICOPY SUPPRESSOR OF IRA1 (MSI1) is a conserved subunit of Polycomb Repressive Complex 2 (PRC2), which mediates gene silencing by histone H3 lysine 27 trimethylation (H3K27Me3). Here, we demonstrated that MSI1 interacts with the RPD3-like histone deacetylase HDA6 both in vitro and in vivo. MSI1 and HDA6 are involved in flowering and repress the expression of FLC, MAF4, and MAF5 by removing H3K9 acetylation but adding H3K27Me3.
View Article and Find Full Text PDFArabidopsis thaliana CONSTANS (CO) is an essential transcription factor that promotes flowering by activating the expression of the floral integrator FLOWERING LOCUS T (FT). A number of histone modification enzymes involved in the regulation of flowering have been identified, but the involvement of epigenetic mechanisms in the regulation of the core flowering regulator CO remains unclear. Previous studies have indicated that the transcription factors, FLOWERING BHLH1 (FBH1), FBH2, FBH3, and FBH4, function redundantly to activate the expression of CO.
View Article and Find Full Text PDFIn recent years, eukaryotic long non-coding RNAs (lncRNAs) have been identified as important factors involved in a wide variety of biological processes, including histone modification, alternative splicing and transcription enhancement. The expression of lncRNAs is highly tissue-specific and is regulated by environmental stresses. Recently, a large number of plant lncRNAs have been identified, but very few of them have been studied in detail.
View Article and Find Full Text PDFMammalian histone deacetylases (HDACs) undergo phosphorylation to regulate their localization, activity, and function. However, little is known about the regulation of plant HDAC function and activity by phosphorylation. Here, we report the crystal structure of the Reduced Potassium Dependency3/Histone Deacetylase1 (RPD3/HDA1) type class II histone deacetylase HDA15 in Arabidopsis ().
View Article and Find Full Text PDFEukaryotic histone deacetylation, critical for maintaining nucleosome structure and regulating gene expression, is mediated by histone deacetylases (HDACs). Although nucleosomes have been reported to regulate mRNA polyadenylation in humans, the role of HDACs in regulating polyadenylation has not been uncovered. Taking advantage of phenotypic studies on , HDA6 (one of HDACs) was found to be a critical part of many biological processes.
View Article and Find Full Text PDFPlant trichomes are large single cells that are organized in a regular pattern and play multiple biological functions. In Arabidopsis, trichome development is mainly governed by the core trichome initiation regulators, including the R2R3 type MYB transcript factor GLABRA 1 (GL1), bHLH transcript factors GLABRA 3/ENHANCER OF GLABRA 3 (GL3/EGL3), and the WD-40 repeat protein TRANSPARENT TESTA GLABRA 1 (TTG1), as well as the downstream trichome regulator GLABRA 2 (GL2). GL1, GL3/EGL3, and TTG1 can form a trimeric activation complex to activate GL2, which is required for the trichome initiation and maintenance during cell differentiation.
View Article and Find Full Text PDFFruit ripening is governed by a complex regulatory network. Reversible histone methylation and demethylation regulate chromatin structure and gene expression. However, little is known about the involvement of histone demethylases in regulating fruit ripening.
View Article and Find Full Text PDFAlthough the interplay of covalent histone acetylation/deacetylation and ATP-dependent chromatin remodelling is crucial for the regulation of chromatin structure and gene expression in eukaryotes, the underlying molecular mechanism in plants remains largely unclear. Here we show a direct interaction between Arabidopsis SWI3B, an essential subunit of the SWI/SNF chromatin-remodelling complex, and the RPD3/HDA1-type histone deacetylase HDA6 both in vitro and in vivo. Furthermore, SWI3B and HDA6 co-repress the transcription of a subset of transposons.
View Article and Find Full Text PDFAs the subunits of the SWI/SNF (mating-type switching (SWI) and sucrose nonfermenting (SNF)) chromatin-remodeling complexes (CRCs), Swi3-like proteins are crucial to chromatin remodeling in yeast and human. Growing evidence indicate that AtSWI3s are also essential for development and response to hormones in . Nevertheless, the biological functions of Swi3-like proteins in tomato () have not been investigated.
View Article and Find Full Text PDFEukaryotic genes are packed into a dynamic but stable nucleoprotein structure called chromatin. Chromatin-remodeling and modifying complexes generate a dynamic chromatin environment that ensures appropriate DNA processing and metabolism in various processes such as gene expression, as well as DNA replication, repair, and recombination. The INO80 and SWR1 chromatin remodeling complexes (INO80-c and SWR1-c) are ATP-dependent complexes that modulate the incorporation of the histone variant H2A.
View Article and Find Full Text PDFPhotomorphogenesis is a critical plant developmental process that involves light-mediated transcriptome and histone modification changes. The transcription factor ELONGATED HYPOCOTYL5 (HY5) acts downstream of multiple families of photoreceptors to promote photomorphogenesis by regulating the expression of light-responsive genes. However, the molecular mechanism for HY5-mediated transcriptional regulation remains largely unclear.
View Article and Find Full Text PDFAs part of chromatin-remodeling complexes (CRCs), sucrose nonfermenting 2 (Snf2) family proteins alter chromatin structure and nucleosome position by utilizing the energy of ATP, which allows other regulatory proteins to access DNA. Plant genomes encode a large number of Snf2 proteins, and some of them have been shown to be the key regulators at different developmental stages in . Yet, little is known about the functions of Snf2 proteins in tomato ().
View Article and Find Full Text PDF