Introduction: Graphene oxide (GO) nanoparticles have emerged as a compelling photothermal agent (PHTA) in the realm of photothermal antibacterial therapy, owing to their cost-effectiveness, facile synthesis, and remarkable photostability. Nevertheless, the therapeutic efficacy of GO nanoparticles is commonly hindered by their inherent drawback of low photothermal conversion efficiency (PCE).
Methods: Herein, we engineer the Ag/GO-GelMA platform by growing the Ag on the surface of GO and encapsulating the Ag/GO nanoparticles into the GelMA hydrogels.
Bacteria-infected wound healing has attracted widespread attention in biomedical engineering. Wound dressing is a potential strategy for repairing infectious wounds. However, the development of wound dressing with appropriate physiochemical, antibacterial, and hemostatic properties, remains challenging.
View Article and Find Full Text PDFThe management of diabetic wounds poses a substantial economic and medical burden for diabetic patients. Oxidative stress and persistent bacterial infections are considered to be the primary factors. Qiai essential oil (QEO) exhibits various pharmacological characteristics, including inflammatory-reducing, antibacterial, and antioxidant properties.
View Article and Find Full Text PDFIntroduction: The formation of bone-like apatite (Ap) on natural polymers through biomimetic mineralization using simulated body fluid (SBF) can improve osteoconductivity and biocompatibility, while lowering immunological rejection. Nonetheless, the coating efficiency of the bone-like Ap layer on natural polymers requires improvement. Carbonyls (-COOH) and hydroxyls (-OH) are abundant in graphene oxide (GO), which may offer more active sites for biomimetic mineralization and promote the proliferation of rat bone marrow stromal cells (BMSCs).
View Article and Find Full Text PDFA single up-flow thiosulfate-driven nitrate denitratation coupled with the sulfurized Anammox (TDSA) with the core-shell structure (S@ Anammox granules) provided a chemical/energy-saving way for the removal of high-content ammonium with nitrate as electron acceptor. Approximately 83.66% total nitrogen removal efficiency (TNRE) could be achieved by the sulfurized Anammox encrusted by S/S at a high loading rate (2.
View Article and Find Full Text PDFElectroplating effluent contaminated with heavy metals posed a major threat on the aquatic ecosystems. The effect of the sulfate-reducing bacteria (SRB) enriched sludge on simultaneous removals of sulfate and nickel was identified. Batch tests showed that SRB biogenic precipitation could completely eliminate the nickel (100 %) with sodium lactate as carbon source at pH 7 within 3 d, and enhanced in the presence of Fe and Fe, while inhibited at high concentrations.
View Article and Find Full Text PDFWith the short-term exposure to Fe, the mechanism of autotrophic denitrification and sulfide oxidation and the correlation between microbial community changes and environmental factors have been explored in the ADSOB process. RSM was used to optimize conditions for the maximum nitrate reduction and sulfide oxidation. About 88% of nitrate could be autotrophically denitrified to nitrogen by utilizing sulfide as the electron donor with the molar ratio C/N of 1.
View Article and Find Full Text PDFIn this study, we screened a new aerobic bacterium (Bacillus megaterium Y-4) that can efficiently reduce Pd(II) with different electron donors. The best electron donor was sodium formate and the best reduction of Pd(II) were by log growth phase cells. The high removal capacity of Pd(II) (1658.
View Article and Find Full Text PDF