Publications by authors named "Keqi Qi"

Article Synopsis
  • The movement of a test mass along a geodesic is vital for detecting gravitational waves in space, requiring advanced inertial sensors to counteract noise from external forces.
  • Ground-based testing of these sensors is critical to ensure their performance and reliability for future space missions.
  • A new low-frequency torsion pendulum apparatus, using a commercial autocollimator for optical readings, has been developed, achieving impressive sensitivity and providing valuable insights for improving inertial sensor designs.
View Article and Find Full Text PDF

Since Einstein's prediction regarding the existence of gravitational waves was directly verified by the ground-based detector Advanced LIGO, research on gravitational wave detection has garnered increasing attention. To overcome limitations imposed by ground vibrations and interference at arm's length, a space-based gravitational wave detection initiative was proposed, which focuses on analyzing a large number of waves within the frequency range below 1 Hz. Due to the weak signal intensity, the TMs must move along their geodesic orbit with a residual acceleration less than 10 m/s/Hz.

View Article and Find Full Text PDF

Temperature fluctuations affect the performance of high-precision gravitational reference sensors. Due to the limited space and the complex interrelations among sensors, it is not feasible to directly measure the temperatures of sensor heads using temperature sensors. Hence, a high-accuracy interpolation method is essential for reconstructing the surface temperature of sensor heads.

View Article and Find Full Text PDF

To increase the interferometric measurement resolution in the Taiji program, we present a noise suppression method in this paper. Taking the specific micro-force perturbation and temperature fluctuation in the Taiji-1 interferometer as an example, we set up and experimentally verified the corresponding transfer function to quantify the effect of both noise sources on the interferometric results. Consistent results were obtained between the numerical and experimental results for the transfer function.

View Article and Find Full Text PDF

A kind of full-function two-sided optical bench interferometer (OBI) is designed to meet the practical requirements of the Taiji Program for space gravitational wave detection. The main optical paths are arranged on the A-side for transmission and interference, and other optical paths and electronic devices are placed on the B-side. According to the design scheme, we successfully constructed two OBIs by using hydrogen-oxygen catalytic stress-free bonding technology.

View Article and Find Full Text PDF

In space gravitational wave detection missions, a drag-free system is used to keep the test mass (TM) free-falling in an ultralow-noise environment. Ground verification experiments should be carried out to clarify the shielding and compensating capabilities of the system for multiple stray force noises. A hybrid apparatus was designed and analyzed based on the traditional torsion pendulum, and a technique for enhancing the sensitivity of the torsion pendulum system by employing the differential wavefront sensing (DWS) optical readout was proposed.

View Article and Find Full Text PDF

The grating lateral shearing interferometer may achieve ultra-high accuracy absolute testing after eliminating the systemic errors from the interferometer itself and the orthogonality problem between two shearing directions. Aiming at the interferometer, we proposed a two-step algorithm for removing the rotationally asymmetric systemic errors from our shearing setup. This rotation method provides a new approach for acquiring the wavefront aberration by choosing the rotation angles with the minimum decentration and to satisfy the immune of systemic errors at the same time.

View Article and Find Full Text PDF

In order to eliminate zeroth order effect and to make the phase shifting algorithm insensitive to phase shifting error, an 11-frame phase shifting algorithm is proposed in this paper. The analytical expression of phase-restoration error function is derived. The principle of phase shifting error compensation and the capability of suppressing zeroth order effect are explained, in comparison of existing algorithm.

View Article and Find Full Text PDF