This work is aimed to develop of a new class of versatile aptasensor to specifically detect aflatoxin B1 (AFB1) using dual-channel detection method. To achieve this objective, gold nanoparticles (AuNPs) having peroxidase-like activity and capability of promoting silver deposition were used as the versatile label for both colorimetric and electrochemical techniques. First of all, aptamer (apt) modified FeO@Au magnetic beads (MBs-apt) and cDNA modified AuNPs (cDNA-AuNPs) were prepared to use as capture probes and signal probes, respectively.
View Article and Find Full Text PDFIn recent years, a ratiometric electrochemical method has been investigated due to its ability to effectively reduce the background electrical signals via the introduction of an internal calibration mechanism, which has great practical significance in the detection of mycotoxins in foods. Herein, we report a ratiometric electrochemical aptasensor based on two semiconductor quantum dots (i.e.
View Article and Find Full Text PDFGold nanostructures such as nanospheres, nanorods, or nanowires have been extensively used for electrode surface modification because they not only can increase the overall electroactive surface but can also provide anchoring sites for thiolated aptamers through facile Au-S covalent bonds. However, all of those gold nanostructures used are solid and only the outer surface is attractive. In the aim to reduce the usage of precious gold, in this paper, porous gold nanocages (AuNCs) with both inner and outer walls for effective aptamer immobilization have been electrostatically adhered on a screen-printed carbon electrode (SPCE), to develop a highly sensitive aptasensor in a truly label-free manner.
View Article and Find Full Text PDFDevelopment of sensitive methods for trace aflatoxin B1 (AFB1) determination is of great significance due to its high toxicity and carcinogenicity. Herein, 3-mercaptopropionic acid (MPA)-capped ternary CdZnTe quantum dots (QDs) have been prepared via a simple hydrothermal route. We found that they exhibited enhanced intensity when benchmarked against their binary counterpart CdTe QDs.
View Article and Find Full Text PDFAflatoxin B1 (AFB1), one of the most common mycotoxins in food matrixes, has been identified as the most toxic contaminant with mutagenic, teratogenic, immunosuppressive, and carcinogenic effects. In this work, a magnetically assembled aptasensing device has been designed for label-free determination of AFB1 by employing a disposable screen-printed carbon electrode (SPCE) covered with a designed polydimethylsiloxane (PDMS) film as the micro electrolytic cell. The magnetically controlled bio-probes were firstly prepared by immobilization of the thiolated aptamers on the FeO@Au magnetic beads, which was rapidly assembled on the working electrode of SPCE within 10 s, by using a magnet placed at the opposite side.
View Article and Find Full Text PDFCurrently there is an urgent need for multi-mycotoxin detection methods due to the co-occurrence of multiple mycotoxins in food raw materials and their augmented toxicity. Herein, a magneto-controlled aptasensor has been developed for simultaneous electrochemical detection of ochratoxin A (OTA) and fumonisin B1 (FB1), two typical mycotoxins found in food crops world-wide. This aptasensor was designed using the high specificity between the target and aptamer with heavy CdTe or PbS quantum dots (QDs) coated silica as labels and the complementary DNA functionalized magnetic beads as capture probes.
View Article and Find Full Text PDF