Publications by authors named "Keppler D"

Over the last 25 years, our understanding of the driving forces for hepatobiliary elimination and knowledge of the molecular basis of uptake and efflux transport in hepatocytes have undergone fundamental changes. This refers to bile acids and many other endogenous substances as well as to drugs that are eliminated on the hepatobiliary route. In this development, not only molecular cloning, functional characterization, and localization of transporters were decisive, but also the discovery of hereditary mutations in genes encoding sinusoidal uptake transporters and canalicular export pumps in humans and rodents.

View Article and Find Full Text PDF

Retroviral gene transfer is a highly efficient and effective method of stably introducing genetic material into the genome of specific cell types. The process involves the transfection of retroviral expression vectors into a packaging cell line, the isolation of viral particles, and the infection of target cell lines. Compared to traditional gene transfer methods such as liposome-mediated transfection, retroviral gene transfer allows for stable gene expression in cell populations without the need for lengthy selection and cloning procedures.

View Article and Find Full Text PDF

Increased concentrations of bilirubin glucuronides in blood plasma indicate hepatocellular dysfunction. Elucidation of the transport processes of bilirubin conjugates across the basolateral (sinusoidal) and the canalicular plasma membrane domains of hepatocytes has decisively contributed to our current understanding of the molecular basis of conjugated hyperbilirubinemia in human liver diseases. Under normal conditions, unconjugated bilirubin is taken up into hepatocytes by transporters of the organic anion-transporting polypeptide (OATP) family, followed by conjugation with glucuronic acid, and ATP-dependent transport into bile.

View Article and Find Full Text PDF

This white paper addresses current approaches and knowledge gaps concerning methods to assess the role of transport proteins in drug/metabolite disposition in humans. The discussion focuses on in vitro tools to address key questions in drug development, including vesicle- and cell-based systems. How these methods can be used to assess the liability of compounds for transporter-based drug-drug interactions (DDIs) in vivo is also explored.

View Article and Find Full Text PDF

The International Transporter Consortium (ITC) has recently described seven transporters of particular relevance to drug development. Based on the second ITC transporter workshop in 2012, we have identified additional transporters of emerging importance in pharmacokinetics, interference of drugs with transport of endogenous compounds, and drug-drug interactions (DDIs) in humans. The multidrug and toxin extrusion proteins (MATEs, gene symbol SLC47A) mediate excretion of organic cations into bile and urine.

View Article and Find Full Text PDF

As a result of the increasing cost pressure on healthcare systems, the depletion of easily addressable and well-validated target groups in drug development and the requirement of public research to contribute to innovative treatment paradigms, broad partnerships between industry and academia are becoming increasingly important. However, owing to different goals and drivers, hurdles have to be overcome to exploit the full potential of such alliances. The factors that need to be taken into account during set-up and management of such alliances and the result and impact all of this has on drug discovery have not been analyzed in a systematic manner until now.

View Article and Find Full Text PDF

ATP-dependent transport of biliary constituents, such as bile acids, reduced glutathione, and bilirubin glucuronosides across the hepatocyte canalicular membrane into bile represents the decisive driving force for the formation of biliary fluid. Functional characterization, cloning, and localization of hepatocellular transporter proteins has provided a molecular understanding of the mechanisms underlying bile flow and intrahepatic cholestasis. Genetic variants in humans and genetic knockout in rodents, or transporter inhibition have indicated that both the conjugate export pump MRP2 (multidrug resistance protein 2; ABCC2) and the bile salt export pump BSEP (ABCB11) are major contributors to bile acid-independent and bile acid-dependent bile flow, respectively.

View Article and Find Full Text PDF

Senescent cells exhibit altered expression of numerous genes. Identifying the significance of the changes in gene expression may help advance our understanding of the senescence biology. Here, we report on the consistent and strong upregulation of CST1 expression during cellular senescence, independent of the initial trigger.

View Article and Find Full Text PDF

During a half-day symposium, the topic 'Channels and Transporters' was covered with five lectures, including a presentation on 'Introduction and Basics of Channels and Transporters' by Beat Ernst, lectures on structure, function and physiology of channels and transporters ('The Structural Basis for Ion Conduction and Gating in Pentameric Ligand-Gated Ion Channels' by Raimund Dutzler and 'Uptake and Efflux Transporters for Endogenous Substances and for Drugs' by Dietrich Keppler), and a case study lecture on 'Avosentan' by Werner Neidhart. The program was completed by Matthias Hediger who introduced to the audience the National Center of Competence in Research (NCCR)-TransCure in his lecture entitled 'From Transport Physiology to Identification of Therapeutic Targets'.

View Article and Find Full Text PDF

The nine multidrug resistance proteins (MRPs) represent the major part of the 12 members of the MRP/CFTR subfamily belonging to the 48 human ATP-binding cassette (ABC) transporters. Cloning, functional characterization, and cellular localization of most MRP subfamily members have identified them as ATP-dependent efflux pumps with a broad substrate specificity for the transport of endogenous and xenobiotic anionic substances localized in cellular plasma membranes. Prototypic substrates include glutathione conjugates such as leukotriene C(4) for MRP1, MRP2, and MRP4, bilirubin glucuronosides for MRP2 and MRP3, and cyclic AMP and cyclic GMP for MRP4, MRP5, and MRP8.

View Article and Find Full Text PDF

The identification of the transport proteins responsible for the uptake and the efflux of nucleosides and their metabolites enables the characterization of their vectorial transport and a better understanding of their absorption, distribution, and elimination. Human concentrative nucleoside transporters (hCNTs/SLC28A) are known to mediate the transport of natural nucleosides and some nucleoside analogs into cells in a sodium-dependent and unidirectional manner. On the other hand, several human multidrug resistance proteins [human ATP-binding cassette transporter, subfamily C (ABCC)] cause resistance against nucleoside analogs and mediate transport of phosphorylated nucleoside derivatives out of the cells in an ATP-dependent manner.

View Article and Find Full Text PDF
Membrane transporters in drug development.

Nat Rev Drug Discov

March 2010

Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed.

View Article and Find Full Text PDF

Unlabelled: An important function of hepatocytes is the biotransformation and elimination of various drugs, many of which are organic cations and are taken up by organic cation transporters (OCTs) of the solute carrier family 22 (SLC22). Because interindividual variability of OCT expression may affect response to cationic drugs such as metformin, we systematically investigated genetic and nongenetic factors of OCT1/SLC22A1 and OCT3/SLC22A3 expression in human liver. OCT1 and OCT3 expression (messenger RNA [mRNA], protein) was analyzed in liver tissue samples from 150 Caucasian subjects.

View Article and Find Full Text PDF

The DNA methyltransferase inhibitors 5-azacytidine (5-azaCyd) and 5-aza-2'-deoxycytidine have found increasing use for the treatment of myeloid leukemias and solid tumors. Both nucleoside analogues must be transported into cells and phosphorylated before they can be incorporated into DNA and inactivate DNA methyltransferases. The members of the human equilibrative and concentrative nucleoside transporter families mediate transport of natural nucleosides and some nucleoside analogues into cells.

View Article and Find Full Text PDF

We have previously localized a cervical cancer tumor suppressor gene to a 300 kb interval of 11q13. Analysis of candidate genes revealed loss of expression of cystatin E/M, a lysosomal cysteine protease inhibitor, in 6 cervical cancer cell lines and 9 of 11 primary cervical tumors. Examination of the three exons in four cervical cancer cell lines, 19 primary tumors, and 21 normal controls revealed homozygous deletion of exon 1 sequences in one tumor.

View Article and Find Full Text PDF

Background: Biliary excretion is a major elimination route of many drugs and their metabolites. Hepatobiliary elimination is a vectorial process involving uptake transporters in the basolateral hepatocyte membrane, possibly Phase I and Phase II metabolizing enzymes, and ATP-dependent efflux pumps in the apical hepatocyte membrane.

Objectives: Because many drugs and their metabolites are anions, this review focuses on transporters involved in their hepatocellular uptake (members of the organic anion transporting polypeptide (OATP) family) and biliary elimination (apical conjugate efflux pump ABCC2/MRP2).

View Article and Find Full Text PDF

An important function of hepatocytes is the biliary elimination of endogenous and xenobiotic small molecules, many of which are organic cations. To study this vectorial transport of organic cations, we constructed a double-transfected Madin-Darby canine kidney strain II (MDCKII) cell line permanently expressing the human organic cation transporter 1 (OCT1, SLC22A1) in the basolateral membrane and MDR1 P-glycoprotein (MDR1 P-gp, ABCB1), an adenosine triphosphate (ATP)-dependent efflux pump for organic cations, in the apical membrane. Additionally, MDCKII single transfectants stably expressing OCT1, MDR1 P-gp, or human organic cation transporter 2 (OCT2, SLC22A2) were generated.

View Article and Find Full Text PDF

The proinflammatory mediators leukotriene (LT) B(4) and LTC(4) must be transported out of cells before they can interact with LT receptors. Previously, we identified the multidrug resistance protein ABCC1 (MRP1) as an efflux pump for LTC(4). However, the molecular basis for the efflux of LTB(4) was unknown.

View Article and Find Full Text PDF

Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport.

View Article and Find Full Text PDF

CST6 is a breast tumor suppressor gene that is expressed in normal breast epithelium, but is epigenetically silenced as a consequence of promoter hypermethylation in metastatic breast cancer cell lines. In the current study, we investigated the expression and methylation status of CST6 in primary breast tumors and lymph node metastases. 25/45 (56%) primary tumors and 17/20 (85%) lymph node metastases expressed significantly lower levels of cystatin M compared to normal breast tissue.

View Article and Find Full Text PDF

During lung development, signaling by Fgf10 (fibroblast growth factor 10) and its receptor Fgfr2b is critical for induction of a gene network that controls proliferation, differentiation, and branching of the epithelial tubules. The downstream events triggered by Fgf10-Fgfr2b signaling during this process are still poorly understood. In a global screen for transcriptional targets of Fgf10, we identified Ctsh (cathepsin H), a gene encoding a lysosomal cysteine protease of the papain family, highly up-regulated in the developing lung epithelium.

View Article and Find Full Text PDF

The serine/threonine protein phosphatase (PP) 2A inhibitor, microcystin-LR, selectively induces liver damage and promotes hepatocarcinogenesis. It is thought that microcystin-LR affects hepatocellular viability mainly through inhibition of PP2A, partially through PP1, and, in addition, by generation of reactive oxygen species (ROS). However, the molecular basis of the selective liver damage and the balance between cell death and survival remained unclear.

View Article and Find Full Text PDF

ABCC2 is a member of the multidrug resistance protein subfamily localized exclusively to the apical membrane domain of polarized cells, such as hepatocytes, renal proximal tubule epithelia, and intestinal epithelia. This localization supports the function of ABCC2 in the terminal excretion and detoxification of endogenous and xenobiotic organic anions, particularly in the unidirectional efflux of substances conjugated with glutathione, glucuronate, or sulfate, as exemplified by leukotriene C(4), bilirubin glucuronosides, and some steroid sulfates. The hepatic ABCC2 pump contributes to the driving forces of bile flow.

View Article and Find Full Text PDF

Although Oatp1a1 (rat organic anion-transporting polypeptide 1a1) was the transporter found responsible for the hepatocellular entry of enalapril (EN) into the rat liver, the canalicular transporter involved for excretion of EN and the metabolite, enalaprilat (ENA), was unknown. The Eisai hyperbilirubinemic rat (EHBR) that lacks Mrp2 (multidrug resistance-associated protein 2) was used to appraise the role of Mrp2 in the excretion of [3H]EN and its metabolite [3H]ENA in single-pass rat liver preparations. Although the total and metabolic clearances and hepatic extraction ratios at steady-state were virtually unaltered for EN in EHBR compared with published values of Sprague-Dawley rats, the biliary clearances of EN and ENA were significantly reduced almost to zero (P<0.

View Article and Find Full Text PDF