Publications by authors named "Kepes F"

Article Synopsis
  • The study focuses on the cilium, a crucial part of mammalian cells, and explores how its dysfunction leads to ciliopathies, a group of genetic diseases.
  • Researchers utilized various data types and advanced statistical methods to identify 285 potential ciliary genes and confirmed ciliary functions for 24 of them through experiments in different model organisms like mice and zebrafish.
  • The findings have led to the creation of CiliaCarta, a comprehensive database of 956 ciliary genes, which can help prioritize genetic testing for patients with ciliopathy disorders.
View Article and Find Full Text PDF

It is widely believed that the folding of the chromosome in the nucleus has a major effect on genetic expression. For example, coregulated genes in several species have been shown to colocalize in space despite being far away on the DNA sequence. In this manuscript, we present a new, to our knowledge, method to model the three-dimensional structure of the chromosome in live cells based on DNA-DNA interactions measured in high-throughput chromosome conformation capture experiments and genome architecture mapping.

View Article and Find Full Text PDF

DNA replication is coupled to growth by an unknown mechanism. Here, we investigated this coupling by analyzing growth and replication in 15 mutants of central carbon metabolism (CCM) cultivated in three rich media. In about one-fourth of the condition tested, defects in replication resulting from changes in initiation or elongation were detected.

View Article and Find Full Text PDF

During replication two replicative polymerases function at the replisome to collectively carry out genome replication. In a reconstituted replication assay, PolC is the main polymerase while the lagging strand DnaE polymerase briefly extends RNA primers synthesized by the primase DnaG prior to handing-off DNA synthesis to PolC. Here, we show that (i) the polymerase activity of DnaE is essential for both the initiation and elongation stages of DNA replication, (ii) its error rate varies inversely with PolC concentration, and (iii) its misincorporations are corrected by the mismatch repair system post-replication.

View Article and Find Full Text PDF

Pathogenicity islands are sets of successive genes in a genome that determine the virulence of a bacterium. In a growing number of studies, bacterial virulence appears to be determined by multiple islands scattered along the genome. This is the case in a family of seven plant pathogens and a human pathogen that, under KdgR regulation, massively secrete enzymes such as pectinases that degrade plant cell wall.

View Article and Find Full Text PDF

Background: Genome layout and gene regulation appear to be interdependent. Understanding this interdependence is key to exploring the dynamic nature of chromosome conformation and to engineering functional genomes. Evidence for non-random genome layout, defined as the relative positioning of either co-functional or co-regulated genes, stems from two main approaches.

View Article and Find Full Text PDF

Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes.

View Article and Find Full Text PDF

GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression.

View Article and Find Full Text PDF

To characterize the thermodynamical equilibrium of DNA chains interacting with a solution of nonspecific binding proteins, we implemented a Flory-Huggins free energy model. We explored the dependence on DNA and protein concentrations of the DNA collapse. For physiologically relevant values of the DNA-protein affinity, this collapse gives rise to a biphasic regime with a dense and a dilute phase; the corresponding phase diagram was computed.

View Article and Find Full Text PDF

Supercoiled DNA polymer models for which the torsional energy depends on the total twist of molecules (Tw) are a priori well suited for thermodynamic analysis of long molecules. So far, nevertheless, the exact determination of Tw in these models has been based on a computation of the writhe of the molecules (Wr) by exploiting the conservation of the linking number, Lk=Tw+Wr, which reflects topological constraints coming from the helical nature of DNA. Because Wr is equal to the number of times the main axis of a DNA molecule winds around itself, current Monte Carlo algorithms have a quadratic time complexity, O(L(2)), with respect to the contour length (L) of the molecules.

View Article and Find Full Text PDF

Conventional approaches to predict transcriptional regulatory interactions usually rely on the definition of a shared motif sequence on the target genes of a transcription factor (TF). These efforts have been frustrated by the limited availability and accuracy of TF binding site motifs, usually represented as position-specific scoring matrices, which may match large numbers of sites and produce an unreliable list of target genes. To improve the prediction of binding sites, we propose to additionally use the unrelated knowledge of the genome layout.

View Article and Find Full Text PDF

The principles underlying the architectural landscape of chromatin beyond the nucleosome level in living cells remains largely unknown despite its potential to play a role in mammalian gene regulation. We investigated the three-dimensional folding of a 1 Mbp region of human chromosome 11 containing the β-globin genes by integrating looping interactions of the CCCTC-binding insulator protein CTCF determined comprehensively by chromosome conformation capture (3C) into a polymer model of chromatin. We find that CTCF-mediated cell type-specific interactions in erythroid cells are organized to favor contacts known to occur in vivo between the β-globin locus control region (LCR) and genes.

View Article and Find Full Text PDF

Recently the mismatch between our newly acquired capacity to synthetize DNA at genome scale, and our low capacity to design ab initio a functional genome has become conspicuous. This essay gathers a variety of constraints that globally shape natural genomes, with a focus on eubacteria. These constraints originate from chromosome replication (leading/lagging strand asymmetry; gene dosage gradient from origin to terminus; collisions with the transcription complexes), from biased codon usage, from noise control in gene expression, and from genome layout for co-functional genes.

View Article and Find Full Text PDF

The need for efficient molecular interplay in time and space within a cell imposes strong constraints that could be partially relaxed if relative gene positions along chromosomes were appropriate. Comparative genomics studies have demonstrated the short-scale conservation of gene proximity along bacterial chromosomes. Additionally, the long-range periodic positioning of evolutionarily correlated genes within Escherichia coli has recently been highlighted.

View Article and Find Full Text PDF

The relevance of biological materials and processes to computing-alias bioputing-has been explored for decades. These materials include DNA, RNA and proteins, while the processes include transcription, translation, signal transduction and regulation. Recently, the use of bacteria themselves as living computers has been explored but this use generally falls within the classical paradigm of computing.

View Article and Find Full Text PDF

Background: The specific position of functionally related genes along the DNA has been shown to reflect the interplay between chromosome structure and genetic regulation. By investigating the statistical properties of the distances separating such genes, several studies have highlighted various periodic trends. In many cases, however, groups built up from co-functional or co-regulated genes are small and contain wrong information (data contamination) so that the statistics is poorly exploitable.

View Article and Find Full Text PDF

A report of the meeting "Challenges in experimental data integration within genome-scale metabolic models", Institut Henri Poincaré, Paris, October 10-11 2009, organized by the CNRS-MPG joint program in Systems Biology.

View Article and Find Full Text PDF

Transcriptional activity has been shown to relate to the organization of chromosomes in the eukaryotic nucleus and in the bacterial nucleoid. In particular, highly transcribed genes, RNA polymerases and transcription factors gather into discrete spatial foci called transcription factories. However, the mechanisms underlying the formation of these foci and the resulting topological order of the chromosome remain to be elucidated.

View Article and Find Full Text PDF

Integrative biology currently undergoes a deep renewal as we witness the increasing influence of systems biology, which explores life's logic, and of synthetic biology, which exploits it.

View Article and Find Full Text PDF

Background: With the improvement of genotyping technologies and the exponentially growing number of available markers, case-control genome-wide association studies promise to be a key tool for investigation of complex diseases. However new analytical methods have to be developed to face the problems induced by this data scale-up, such as statistical multiple testing, data quality control and computational tractability.

Results: We present a novel method to analyze genome-wide association studies results.

View Article and Find Full Text PDF

Many complex cellular processes involve major changes in topology and geometry. We have developed a method using topology-based geometric modelling in which the edge labels of an n-dimensional generalized map (a subclass of graphs) represent the relations between neighbouring biological compartments. We illustrate our method using two topological models of the Golgi apparatus.

View Article and Find Full Text PDF