Publications by authors named "Kenzie Baer"

Innovation in image-guided procedures has been driven by advances in robotic Cone Beam Computed Tomography (CBCT) systems. A fundamental challenge for CBCT imaging is metal artifacts arising from surgical tools and implanted hardware. Here, we outline how two universal non-circular imaging orbits, optimized for metal artifact reduction, can be implemented in real-time on clinical robotic CBCT systems.

View Article and Find Full Text PDF

Recently developed modular bioassembly techniques hold tremendous potential in tissue engineering and regenerative medicine, due to their ability to recreate the complex microarchitecture of native tissue. Here, we developed a novel approach to fabricate hybrid tissue-engineered constructs adopting high-throughput microfluidic and 3D bioassembly strategies. Osteochondral tissue fabrication was adopted as an example in this study, because of the challenges in fabricating load bearing osteochondral tissue constructs with phenotypically distinct zonal architecture.

View Article and Find Full Text PDF

Detection of early osteoarthritis to stabilize or reverse the damage to articular cartilage would improve patient function, reduce disability, and limit the need for joint replacement. In this study, we investigated nondestructive photon-processing spectral computed tomography (CT) for the quantitative measurement of the glycosaminoglycan (GAG) content compared to destructive histological and biochemical assay techniques in normal and osteoarthritic tissues. Cartilage-bone cores from healthy bovine stifles were incubated in 50% ioxaglate (Hexabrix) or 100% gadobenate dimeglumine (MultiHance).

View Article and Find Full Text PDF

Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown.

View Article and Find Full Text PDF