Islet transplantation is a promising option for the clinical treatment of insulin-dependent diabetes, but a reliable islet cryopreservation/transplantation protocol should be established to overcome the donor shortage. The current study reports that a silk fibroin (SF) sponge disk can be used as a cryodevice for vitrification of large quantity pancreatic islets and the scaffold for subsequent subrenal transplantation in a rat model. The marginal islet mass (550 islet equivalents [IEQs]) on an SF sponge disk was vitrified-warmed and transplanted beneath the kidney capsule of a streptozotocin-induced diabetic rat with or without vascular endothelial growth factor (VEGF).
View Article and Find Full Text PDFDispersed single cells from pancreatic islets can configure the three-dimensional islet-like architecture (pseudo-islets) with insulin secretion potential and controllable size through their aggregation property. The present study was designed to investigate whether cryopreservation of islets or islet cells can contribute to the efficient pseudo-islet fabrication in the rat model. In control group (CT), islet single cells were prepared by trypsin digestion of 50-400-µm ø fresh control islets, and then cultured for 3 days in the U-bottom microwell to fabricate pseudo-islets.
View Article and Find Full Text PDFCryopreservation of pancreatic islets can overcome the severe shortage of islet donors in clinical islet transplantation, but the impaired quality of post-warm islets need improvement. This present study was conducted to investigate whether the pre- or post-treatment of rat islets with liver decellularized matrix (LDM) for vitrification can improve the viability (FDA/PI double staining) and the functionality (glucose-stimulated insulin secretion [GSIS] assay). Rat LDM was prepared by high-hydrostatic pressure, lyophilization, and re-suspension in saline.
View Article and Find Full Text PDFWe report the adaptability of rat islets vitrified-warmed on nylon mesh (NM) device or silk fibroin (SF) sponge disc for the normalization of the blood glucose level in rat models of diabetes. One-hundred rat islets were cryopreserved according to a minimum volume cooling protocol on an NM device or a solid surface vitrification protocol on an SF sponge disc. The recovery rate (97.
View Article and Find Full Text PDF