Publications by authors named "Kenya Shitara"

Prostate-specific membrane antigen (PSMA) is an attractive target for treatment of prostate cancer. Using the PSMA-recognizing mouse monoclonal antibody 2C9 obtained in our previous study, the biological activities of PSMA antibody were evaluated. Mouse-human chimeric IgG1 of 2C9 (KM2777) showed antibody-dependent cellular cytotoxicity activity against PSMA-expressing prostate cancer cells in the presence of human peripheral blood mononuclear cells (PBMCs).

View Article and Find Full Text PDF

Background: Endocrine resistance is a critical issue in managing patients with prostate cancer. This study is undertaken to search for a potential molecular target connected with this process using a model system of androgen-dependent and androgen-unresponsive SC-3 and SC-4 cells.

Methods: Expression profiles, actin stress fiber organization, and the levels of activated Rho GTPases were compared between SC-4 and SC-3 cells using an oligonucleotide microarray, phalloidin staining, and a Rho activation assay.

View Article and Find Full Text PDF

Purpose: Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) is a member of the EGF family and plays a pivotal role in tumor progression in ovarian cancer. We developed an anti-HB-EGF monoclonal antibody (mAb) and investigated its antitumor activities in vitro and in vivo to evaluate its potential as a therapeutic antibody against ovarian cancer.

Experimental Design: We prepared mAbs from HB-EGF null mice immunized with recombinant human soluble HB-EGF and evaluated their binding and neutralizing activity against HB-EGF.

View Article and Find Full Text PDF

Purpose: Adult T-cell leukemia/lymphoma (ATLL) has a very poor prognosis. We have developed the humanized defucosylated anti-CC chemokine receptor 4 (CCR4) monoclonal antibody KW-0761 as a next generation immunotherapeutic agent. The first aim of the present study was to evaluate whether the antitumor activity of KW-0761 would likely be sufficient for therapeutic clinical application against ATLL.

View Article and Find Full Text PDF

Insulin-like growth factors (IGF-I and IGF-II) play important roles in intestinal tumorigenesis. To investigate the effectiveness of IGF-targeting strategies, we conducted an in vivo study using anti-mouse neutralizing antibodies IGF-I (KM3168) and IGF-II (KM1468). Six- and 10-week-old Apc(+/-) mice were given KM3168 and/or KM1468 i.

View Article and Find Full Text PDF

One of the major issues in current antibody therapy is insufficient efficacy. Various biological factors relating to the host's immune system or tumor cells have been suggested to reduce the efficacy of anti-CD20 therapy in B-cell malignancies. In this study, we characterized the in vitro anti-lymphoma activity of anti-CD20 antibodies having a novel engineered heavy chain with enhanced complement-dependent cytotoxicity (CDC).

View Article and Find Full Text PDF

In the past decade, more than 20 therapeutic antibodies have been approved for clinical use and many others are now at the clinical and preclinical stage of development. Fragment crystallizable (Fc)-dependent antibody functions, such as antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and a long half-life, have been suggested as important clinical mechanisms of therapeutic antibodies. These functions are primarily triggered through direct interaction of the Fc domain with its corresponding receptors: FcgammaRIIIa for ADCC, C1q for CDC, and neonatal Fc receptor for prolongation of the clearance rate.

View Article and Find Full Text PDF

By using neutralizing monoclonal antibodies to vascular endothelial growth factor receptor type 1 (VEGFR1) and VEGFR2, we have shown that acute myelogenous leukemia (AML) cells with specific chromosome abnormalities are dependent on VEGF/VEGFR system. AML with t(8;21) is the most dependent subtype on VEGF with both VEGFR1 and VEGFR2. t(15;17)AML cells depend on VEGF with VEGFR1.

View Article and Find Full Text PDF

Background: Antibody-dependent cellular cytotoxicity (ADCC) has recently been identified as one of the critical mechanisms underlying the clinical efficacy of therapeutic antibodies, especially anticancer antibodies. Therapeutic antibodies fully lacking the core fucose of the Fc oligosaccharides have been found to exhibit much higher ADCC in humans than their fucosylated counterparts. However, data which show how fully non-fucosylated antibodies achieve such a high ADCC in human whole blood have not yet been disclosed.

View Article and Find Full Text PDF

Objective: Antibody-dependent cellular cytotoxicity mediated by natural killer cells via leukocyte receptor IIIa (FcgammaRIIIa) is greatly enhanced by the absence of the core fucose of Fc oligosaccharides, and is closely related to the clinical efficacy of anticancer processes in humans in vivo. Here, we focused on the physiological functions of nonfucosylated anti-CD20 IgG1 rituximab, in particular those functions mediated by human neutrophils, which highly express FcgammaRIIIb, a highly homologous FcgammaR to FcgammaRIIIa.

Materials And Methods: After treatment with anti-CD20, the response of neutrophils to fluorescently labeled CD20(+) B-cell lymphoma in human whole blood was quantitatively analyzed by measuring their activities of antibody-dependent phagocytosis and major histocompatibility complex (MHC) class II expression on the phagocytotic neutrophils using flow cytometry.

View Article and Find Full Text PDF

Antibody-dependent cellular cytotoxicity (ADCC), a lytic attack on antibody-targeted cells, is triggered upon binding of lymphocyte receptors (FcgammaRs) to the antibody constant region. ADCC is considered to be a major therapeutic function of antibodies. ADCC requires the presence of oligosaccharides in the Fc region and is sensitive to change in the oligosaccharide structure.

View Article and Find Full Text PDF

Therapeutic antibody IgG1 has two N-linked oligosaccharide chains bound to the Fc region. The oligosaccharides are of the complex biantennary type, composed of a trimannosyl core structure with the presence or absence of core fucose, bisecting N-acetylglucosamine (GlcNAc), galactose, and terminal sialic acid, which gives rise to structural heterogeneity. Both human serum IgG and therapeutic antibodies are well known to be heavily fucosylated.

View Article and Find Full Text PDF

Human leukocyte receptor IIIa (Fc gamma RIIIa) plays an important role in mediating therapeutic antibodies' antibody-dependent cellular cytotoxicity (ADCC), which is closely related to the clinical efficacy of anticancer processes in humans in vivo. The removal of the core fucose from oligosaccharides attached to the Fc region of antibodies improves Fc gamma RIIIa binding, allowing the antibodies to enhance dramatically the antibody effector functions of ADCC. In this study, the contribution of Fc gamma RIIIa oligosaccharides to the strength of the Fc gamma RIIIa/antibody complex was analyzed using a serial set of soluble human recombinant Fc gamma RIIIa lacking the oligosaccharides.

View Article and Find Full Text PDF

Tn-antigen (alpha-N-acetyl-galactosamine(GalNAc)-Ser/Thr) is a cancer-associated carbohydrate antigen expressed in various epithelial and hematological cancers, and although a number of anti-Tn IgG and IgM antibodies have been generated, they have not been fully validated for cancer immunotherapy. In this study, we generated a novel murine anti-Tn IgG1 monoclonal antibody, KM3413, by immunization of mucins purified from a culture supernatant of LS180: a human colon cancer cell line. The binding of KM3413 was detected against consecutive Tn-antigens (Tn3 and Tn2), but not against monovalent antigens (Tn1).

View Article and Find Full Text PDF

Enhancement of multiple effector functions of an antibody may be a promising approach for antibody therapy. We have previously reported that fucose removal from Fc-linked oligosaccharides greatly enhances antibody-dependent cellular cytotoxicity (ADCC) of therapeutic antibodies. Here, we report a unique approach to enhance complement-dependent cytotoxicity (CDC), another important effector function of antitumor antibodies, by using engineered constant region of human IgG1/IgG3 chimeric isotypes.

View Article and Find Full Text PDF

Background: Fibroblast growth factor 8-isoform b (FGF8b) has been detected in human clinical sex-organ related cancers including hormone-refractory prostate cancer. There are, however, few relevant experimental models. A murine monoclonal anti-FGF8 antibody, KM1334, has been shown to neutralize FGF8b and inhibit the growth of androgen-dependent mouse mammary SC-3 cells in vitro and in vivo.

View Article and Find Full Text PDF

Cleavage of the extracellular matrix (ECM) by proteolysis unmasks cryptic sites and generates novel fragments with biological activities functionally distinct from those of the intact ECM molecule. The laminin G-like (LG)4-5 fragment has been shown to be excised from the laminin alpha4 chain in various tissues. However, the functional role of this fragment has remained unknown to date.

View Article and Find Full Text PDF

Background: Antibody-dependent cellular cytotoxicity (ADCC) is greatly enhanced by the absence of the core fucose of oligosaccharides attached to the Fc, and is closely related to the clinical efficacy of anticancer activity in humans in vivo. Unfortunately, all licensed therapeutic antibodies and almost all currently-developed therapeutic antibodies are heavily fucosylated and fail to optimize ADCC, which leads to a large dose requirement at a very high cost for the administration of antibody therapy to cancer patients. In this study, we explored the possibility of converting already-established antibody-producing cells to cells that produce antibodies fully lacking core fucosylation in order to facilitate the rapid development of next-generation therapeutic antibodies.

View Article and Find Full Text PDF

Currently, removal of core fucose from the Fc oligosaccharides of therapeutic antibodies is widely recognized as being of great importance for the effector function of antibody-dependent cellular cytotoxicity, and alpha-1,6-fucosyltransferase (FUT8) knockout cells have been generated as an ideal host cell line for manufacturing such therapeutics. Here, we attempted to identify genes other than FUT8 that could be targeted for the manufacture of non-fucosylated therapeutics. Loss-of-function analyses using siRNAs against three key genes involved in oligosaccharide fucosylation in Chinese hamster ovary (CHO) cells revealed that there was a positive correlation between the Fc oligosaccharide fucosylation and the mRNA expression through the origin in the cases of both GDP-fucose 4,6-dehydratase (GMD) and FUT8, but not for the GDP-fucose transporter, suggesting that there is no functional redundancy in GMD and FUT8.

View Article and Find Full Text PDF

Antibody-dependent cellular cytotoxicity (ADCC) is considered to be an important therapeutic function for clinical efficacy of monoclonal antibodies. Recent studies have revealed two methods to increase binding affinity for FcgammaRIIIa and enhance ADCC more efficiently for antibodies: (i) fucose removal from antibody N-linked complex oligosaccharides and (ii) amino acid mutations in the antibody Fc region. In this study, we compare the biological activities of the methods of generating high ADCC antibodies.

View Article and Find Full Text PDF

Removal of the fucose residue from the oligosaccharides attached to Asn297 of human immunoglobulin G1 (IgG1) results in a significant enhancement of antibody-dependent cellular cytotoxicity (ADCC) via improved IgG1 binding to Fcgamma receptor IIIa. To provide structural insight into the mechanisms of affinity enhancement, we determined the crystal structure of the nonfucosylated Fc fragment and compared it with that of fucosylated Fc. The overall conformations of the fucosylated and nonfucosylated Fc fragments were similar except for hydration mode around Tyr296.

View Article and Find Full Text PDF

Purpose: Removal of fucose residues from the oligosaccharides of human antibody is a powerful approach to enhance antibody-dependent cellular cytotoxicity (ADCC), a potential important antitumor mechanism of therapeutic antibodies. To provide clinically relevant evidence of this mechanism, we investigated ADCC of a fucose-negative version of trastuzumab [anti-human epidermal growth factor receptor 2 (HER2) humanized antibody] using peripheral blood mononuclear cells (PBMC) from breast cancer patients as effector cells.

Experimental Design: Thirty volunteers, including 20 breast cancer patients and 10 normal healthy control donors, were recruited randomly, and aliquots of peripheral blood were collected.

View Article and Find Full Text PDF

Most of the existing therapeutic antibodies that have been licensed and developed as medical agents are of the human IgG1 isotype, the molecular weight of which is approximately 150 kDa. Human IgG1 is a glycoprotein bearing two N-linked biantennary complex-type oligosaccharides bound to the antibody constant region (Fc), in which the majority of the oligosaccharides are core fucosylated, and it exercises the effector functions of antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity through the interaction of the Fc with either leukocyte receptors (FcgammaRs) or complement. Recently, therapeutic antibodies have been shown to improve overall survival as well as time to disease progression in a variety of human malignancies, such as breast, colon and haematological cancers, and genetic analysis of FcgammaR polymorphisms of cancer patients has demonstrated that ADCC is a major antineoplasm mechanism responsible for clinical efficacy.

View Article and Find Full Text PDF

Fucose removal from complex-type oligosaccharide of human IgGs results in a major enhancement of Fc-dependent cellular cytotoxicity. The aim of this study was to determine the effect of fucose removal on the effector function of another class of clinically important molecules that can effect cellular cytotoxicity, Fc fusion proteins. The receptors chosen for study were TNF receptor II and LFA-3, both of which have therapeutic significance.

View Article and Find Full Text PDF