Publications by authors named "Kenya Shimada"

Electronic inhomogeneity arises ubiquitously as a consequence of adjacent and/or competing multiple phases or orders in strongly correlated electron systems. Gap inhomogeneity in high- cuprate superconductors has been widely observed using scanning tunneling microscopy/spectroscopy. However, it has yet to be evaluated by angle-resolved photoemission spectroscopy (ARPES) due to the difficulty in achieving both high energy and spatial resolutions.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has identified unconventional antiferromagnets that allow for spin splitting of electronic states, which could significantly advance antiferromagnetic spintronics due to their unique magnetic symmetries.
  • * The study focuses on CrSb, a promising metallic antiferromagnet with a high Néel temperature of 703 K, using techniques like angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) to analyze its electronic structure.
  • * Findings disclose a notable, k-dependent spin splitting of up to 0.8 eV, surpassing traditional spin-orbit coupling effects, suggesting CrSb could contribute to the development of efficient spintronic devices that work at room temperature.
View Article and Find Full Text PDF

The Weyl semimetals represent a distinct category of topological materials wherein the low-energy excitations appear as the long-sought Weyl Fermions. Exotic transport and optical properties are expected because of the chiral anomaly and linear energy-momentum dispersion. While three-dimensional Weyl semimetals have been successfully realized, the quest for their two-dimensional (2D) counterparts is ongoing.

View Article and Find Full Text PDF

One of the approaches to manipulate MnBi2Te4 properties is the magnetic dilution, which inevitably affects the interplay of magnetism and band topology in the system. In this work, we carried out angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations for analysing changes in the electronic structure of Mn1-xGexBi2Te4 that occur under parameter x variation. We consider two ways of Mn/Ge substitution: (i) bulk doping of the whole system; (ii) surface doping of the first septuple layer.

View Article and Find Full Text PDF

The destructive interference of wavefunctions in a kagome lattice can give rise to topological flat bands (TFBs) with a highly degenerate state of electrons. Recently, TFBs have been observed in several kagome metals, including FeSn, FeSn, CoSn, and YMnSn. Nonetheless, kagome materials that are both exfoliable and semiconducting are lacking, which seriously hinders their device applications.

View Article and Find Full Text PDF

Dirac materials, which feature Dirac cones in the reciprocal space, have been one of the hottest topics in condensed matter physics in the past decade. To date, 2D and 3D Dirac Fermions have been extensively studied, while their 1D counterparts are rare. Recently, Si nanoribbons (SiNRs), which are composed of alternating pentagonal Si rings, have attracted intensive attention.

View Article and Find Full Text PDF

In this review, an attempt has been made to compare the electronic structures of various 5d iridates (iridium oxides), with an effort to note the common features and differences. Both experimental studies, especially angle-resolved photoemission spectroscopy (ARPES) results, and first-principles band structure calculations have been discussed. This brings to focus the fact that the electronic structures and magnetic properties of the high-Z 5d transition iridates depend on the intricate interplay of strong electron correlation, strong (relativistic) spin-orbit coupling, lattice distortion, and the dimensionality of the system.

View Article and Find Full Text PDF

The spin polarization in nonmagnetic materials is conventionally attributed to the outcome of spin-orbit coupling when the global inversion symmetry is broken. The recently discovered hidden spin polarization indicates that a specific atomic site asymmetry could also induce measurable spin polarization, leading to a paradigm shift in research on centrosymmetric crystals for potential spintronic applications. Here, combining spin- and angle-resolved photoemission spectroscopy and theoretical calculations, we report distinct spin-momentum-layer locking phenomena in a centrosymmetric, layered material, BiOI.

View Article and Find Full Text PDF

Lateral heterojunctions of atomically precise graphene nanoribbons (GNRs) hold promise for applications in nanotechnology, yet their charge transport and most of the spectroscopic properties have not been investigated. Here, we synthesize a monolayer of multiple aligned heterojunctions consisting of quasi-metallic and wide-bandgap GNRs, and report characterization by scanning tunneling microscopy, angle-resolved photoemission, Raman spectroscopy, and charge transport. Comprehensive transport measurements as a function of bias and gate voltages, channel length, and temperature reveal that charge transport is dictated by tunneling through the potential barriers formed by wide-bandgap GNR segments.

View Article and Find Full Text PDF

Emergent phenomena such as unconventional superconductivity, Mott-like insulators, and the peculiar quantum Hall effect in graphene-based heterostructures are proposed to stem from the superlattice-induced renormalization of (moiré) Dirac fermions at the graphene Brillouin zone corners. Understanding the corresponding band structure commonly demands photoemission spectroscopy with both sub-meV resolution and large-momentum coverage, beyond the capability of the current state-of-the-art. Here the realization of moiré Dirac cones around the Brillouin zone center in monolayer In Se /bilayer graphene heterostructure is reported.

View Article and Find Full Text PDF

The band structures of the transition metal dichalcogenides (TMD's) 2H-MoS(0001) and 2H-WSe(0001), before and after palladium adsorption, were investigated through angle-resolved photoemission. Palladium adsorption on 2H-MoS(0001) is seen to result in very different band shifts than seen for palladium on 2H-WSe(0001). The angle resolved photoemission results of palladium adsorbed on WSe(0001) indicate that palladium accepts electron density from substrate.

View Article and Find Full Text PDF

Chalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSbTe is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSbTe can be viewed as a 3D analogue of graphene.

View Article and Find Full Text PDF

We demonstrate that the excitonic insulator ground state of Ta_{2}NiSe_{5} can be electrically controlled by electropositive surface adsorbates. Our studies utilizing angle-resolved photoemission spectroscopy reveal intriguing wave-vector-dependent deformations of the characteristic flattop valence band of this material upon potassium adsorption. The observed band deformation indicates a reduction of the single-particle band gap due to the Stark effect near the surface.

View Article and Find Full Text PDF

Spin-orbit coupling (SOC) has gained much attention for its rich physical phenomena and highly promising applications in spintronic devices. The Rashba-type SOC in systems with inversion symmetry breaking is particularly attractive for spintronics applications since it allows for flexible manipulation of spin current by external electric fields. Here, we report the discovery of a giant anisotropic Rashba-like spin splitting along three momentum directions (3D Rashba-like spin splitting) with a helical spin polarization around the M points in the Brillouin zone of trigonal layered PtBi.

View Article and Find Full Text PDF

Two-dimensional (2D) materials have attracted great attention and spurred rapid development in both fundamental research and device applications. The search for exotic physical properties, such as magnetic and topological order, in 2D materials could enable the realization of novel quantum devices and is therefore at the forefront of materials science. Here, we report the discovery of twofold degenerate Weyl nodal lines in a 2D ferromagnetic material, a single-layer gadolinium-silver compound, based on combined angle-resolved photoemission spectroscopy measurements and theoretical calculations.

View Article and Find Full Text PDF

Atomic scale engineering of two-dimensional materials could create devices with rich physical and chemical properties. External periodic potentials can enable the manipulation of the electronic band structures of materials. A prototypical system is (3×3)-silicene/Ag(111), which has substrate-induced periodic modulations.

View Article and Find Full Text PDF

The charge density wave (CDW) in ZrTe_{3} is quenched in samples with a small amount of Te isoelectronically substituted by Se. Using angle-resolved photoemission spectroscopy we observe subtle changes in the electronic band dispersions and Fermi surfaces upon Se substitution. The scattering rates are substantially increased, in particular for the large three-dimensional Fermi surface sheet.

View Article and Find Full Text PDF

We report the electronic structure of CuTe with a high charge density wave (CDW) transition temperature T_{c}=335  K by angle-resolved photoemission spectroscopy. An anisotropic charge density wave gap with a maximum value of 190 meV is observed in the quasi-one-dimensional band formed by Te p_{x} orbitals. The CDW gap can be filled by increasing the temperature or electron doping through in situ potassium deposition.

View Article and Find Full Text PDF

Angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental technique in materials science, as it can directly probe electronic states inside solids in energy (E) and momentum (k) space. As an advanced technique, spatially-resolved ARPES using a well-focused light source (high-resolution ARPES microscopy) has recently attracted growing interests because of its capability to obtain local electronic information at micro- or nano-metric length scales. However, there exist several technical challenges to guarantee high precision in determining translational and rotational positions in reasonable measurement time.

View Article and Find Full Text PDF

Topological nodal line semimetals, a novel quantum state of materials, possess topologically nontrivial valence and conduction bands that touch at a line near the Fermi level. The exotic band structure can lead to various novel properties, such as long-range Coulomb interaction and flat Landau levels. Recently, topological nodal lines have been observed in several bulk materials, such as PtSn, ZrSiS, TlTaSe and PbTaSe.

View Article and Find Full Text PDF

Electronic structures of ferromagnetic heavy fermion Yb compounds of YbPdSi, YbPdGe, and YbPtGe are studied by photoelectron spectroscopy around the Yb 4d-4f resonance, resonant x-ray emission spectroscopy at the Yb L absorption edge, and density functional theory combined with dynamical mean field theory calculations. These compounds all have a temperature-independent intermediate Yb valence with large [Formula: see text] and small [Formula: see text] components. The magnitude of the Yb valence is evaluated to be YbPtGe [Formula: see text] YbPdGe [Formula: see text] YbPdSi, suggesting that YbPtGe is the closest to the quantum critical point among the three Yb compounds.

View Article and Find Full Text PDF

We have developed a laser-based scanning angle-resolved photoemission spectroscopy system (µ-ARPES) equipped with a high precision 6-axis control system, realizing not only high-resolution photoemission spectroscopy in energy and momentum, but also spatial resolution of a µm scale. This enables our µ-ARPES system to probe fine details of intrinsic electronic states near the Fermi level such as the superconducting gaps and lifetime broadening.

View Article and Find Full Text PDF

We have investigated the influence of metal adsorbates (sodium and cobalt) on the occupied and unoccupied electronic structure of MoS(0 0 0 1) and WSe(0 0 0 1), through a combination of both photoemission and inverse photoemission. The electronic structure is rigidly shifted in both the WSe and MoS systems, with either Na or Co adsorption, generally as predicted by accompanying density functional theory based calculations. Na adsorption is found to behave as an electron donor (n-type) in MoS, while Co adsorption acts as an electron acceptor (p-type) in WSe.

View Article and Find Full Text PDF

We performed annealing and angle resolved photoemission spectroscopy studies on electron-doped cuprate Pr_{1-x}LaCe_{x}CuO_{4-δ} (PLCCO). It is found that the optimal annealing condition is dependent on the Ce content x. The electron number (n) is estimated from the experimentally obtained Fermi surface volume for x=0.

View Article and Find Full Text PDF

The orbital symmetry of the band structure of 2H-WSe2(0 0 0 1) has been investigated by means of angle-resolved photoelectron spectroscopy (ARPES) and density functional theory (DFT). The WSe2(0 0 0 1) experimental band structure is found, by ARPES, to be significantly different for states of even and odd reflection parities along both the [Formula: see text]-[Formula: see text] and [Formula: see text]-[Formula: see text] lines, in good agreement with results obtained from DFT. The light polarization dependence of the photoemission intensities from the top of the valence band for bulk WSe2(0 0 0 1) is explained by the dominance of W 5[Formula: see text] states around the [Formula: see text]-point and W 5d xy states around the [Formula: see text]-point, thus dominated, respectively, by states of even and odd symmetry, with respect to the [Formula: see text]-[Formula: see text] line.

View Article and Find Full Text PDF