Multiferroic materials, particularly those possessing simultaneous electric and magnetic orders, offer a platform for design technologies and to study modern physics. Despite the substantial progress and evolution of multiferroics, one priority in the field remains to be the discovery of unexplored materials, especially those offering different mechanisms for controlling electric and magnetic orders. Here we demonstrate the simultaneous thermal control of electric and magnetic polarizations in quasi-two-dimensional halides (K,Rb)MnCl, arising from a polar-antipolar transition, as evidenced using both X-ray and neutron powder diffraction data.
View Article and Find Full Text PDFThe iron-based superconductors had a significant impact on condensed matter physics. They have a common structural motif of a two-dimensional square iron lattice and exhibit fruitful physical properties as a strongly correlated electron system. During the extensive investigations, quasi-one-dimensional iron-based spin-ladder compounds attracted much attention as a platform for studying the interplay between magnetic and orbital ordering.
View Article and Find Full Text PDFWe investigate the magnetic phase diagram of a solid solution BaFe_{2}(S_{1-x}Se_{x})_{3}, which is categorized into a new family of Fe-based superconductors hosting a quasi-one-dimensional ladder lattice. We show that the antiferromagnetic order is largely suppressed due to bicritical fluctuations in the vicinity of the magnetic transition at x=0.23 from the stripe-type to block-type ordering.
View Article and Find Full Text PDFA major problem in the field of high-transition temperature () superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties.
View Article and Find Full Text PDFWe have developed a helium gas flow cryostat for use on synchrotron tender to hard X-ray beamlines. Very efficient sample cooling is achieved because the sample is placed directly in the cooling helium flow on a removable sample holder. The cryostat is compact and easy to operate; samples can be changed in less than 5 min at any temperature.
View Article and Find Full Text PDFThe discovery of the post-perovskite transition, which is the structural transition from the perovskite to post-perovskite structure in MgSiO under pressure, has aroused great interests in geosciences. Despite of previous extensive studies, key factors of the post-perovsktie transition are still under hot debate primarily due to the big difficulty in performing systematic experiments under extreme conditions. Hence, search for new materials showing the post-perovskite transition under ambient pressure has been highly expected.
View Article and Find Full Text PDFThe pressure effects on the antiferromagentic orders in iron-based ladder compounds CsFe_{2}Se_{3} and BaFe_{2}S_{3} have been studied using neutron diffraction. With identical crystal structure and similar magnetic structures, the two compounds exhibit highly contrasting magnetic behaviors under moderate external pressures. In CsFe_{2}Se_{3} the ladders are brought much closer to each other by pressure, but the stripe-type magnetic order shows no observable change.
View Article and Find Full Text PDFWe performed high-pressure study for a Mott insulator BaFe_{2}S_{3}, by measuring dc resistivity and ac susceptibility up to 15 GPa. We found that the antiferromagnetic insulating state at the ambient pressure is transformed into a metallic state at the critical pressure, P_{c}=10 GPa, and the superconductivity with the optimum T_{c}=24 K emerges above P_{c}. Furthermore, we found that the metal-insulator transition (Mott transition) boundary terminates at a critical point around 10 GPa and 75 K.
View Article and Find Full Text PDFAll the iron-based superconductors identified so far share a square lattice composed of Fe atoms as a common feature, despite having different crystal structures. In copper-based materials, the superconducting phase emerges not only in square-lattice structures but also in ladder structures. Yet iron-based superconductors without a square-lattice motif have not been found, despite being actively sought out.
View Article and Find Full Text PDFSuperconductivity, which is a quantum state induced by spontaneous gauge symmetry breaking, frequently emerges in low-dimensional materials. Hence, low dimensionality has long been considered as necessary to achieve high superconducting transition temperatures (TC). The recently discovered post-perovskite (ppv) MgSiO3, which constitutes the Earth's lowermost mantle (D" layer), has attracted significant research interest due to its importance in geoscience.
View Article and Find Full Text PDFUnusual electronic phase transitions in the A-site ordered perovskites LnCu3Fe4O12 (Ln: trivalent lanthanide ion) are investigated. All LnCu3Fe4O12 compounds are in identical valence states of Ln(3+)Cu(2+)3Fe(3.75+)4O12 at high temperature.
View Article and Find Full Text PDFWe performed resonant x-ray diffraction experiments at the L absorption edges for the post-perovskite-type compound CaIrO(3) with a (t(2g))^{5} electronic configuration. By observing the magnetic signals, we could clearly see that the magnetic structure was a striped ordering with an antiferromagnetic moment along the c axis and that the wave function of a t(2g) hole is strongly spin-orbit entangled, the J(eff)=1/2 state. The observed spin arrangement is consistent with theoretical work predicting a unique superexchange interaction in the J(eff)=1/2 state and points to the universal importance of the spin-orbit coupling in Ir oxides, independent of the octahedral connectivity and lattice topology.
View Article and Find Full Text PDFThe structural, electronic, and optical properties of pyrochlore-type Pb(2)Ir(2)O(6)O(0.55)('), which is a metal without spatial inversion symmetry at room temperature, were investigated. Structural analysis revealed that the structural distortion relevant to the breakdown of the inversion symmetry is dominated by the Pb-O' network but is very small in the Ir-O network.
View Article and Find Full Text PDFA novel iron perovskite YCu3Fe4O12 was synthesized under high pressure and high temperature of 15 GPa and 1273 K. Synchrotron X-ray and electron diffraction measurements have demonstrated that this compound crystallizes in the cubic AA'3B4O12-type perovskite structure (space group Im3, No. 204) with a lattice constant of a = 7.
View Article and Find Full Text PDFAn A-site-ordered perovskite LaCu3Pt(3.75)O12 was synthesized by replacing Ca(2+) with La(3+) in a cubic quadruple AA'3B4O12-type perovskite CaCu3Pt4O12 under high-pressure and high-temperature of 15 GPa and 1100 °C. In LaCu3Pt(3.
View Article and Find Full Text PDFNovel A-site ordered perovskites CaPd(3)Ti(4)O(12) and CaPd(3)V(4)O(12) were synthesized under high-pressure and high-temperature of 15 GPa and 1000 °C. These compounds are the first example in which a crystallographic site in a perovskite-type structure is occupied by Pd(2+) ions with a 4d(8) low spin configuration. The ionic models for these compounds were determined to be Ca(2+)Pd(2+)(3)Ti(4+)(4)O(12) and Ca(2+)Pd(2+)(3)V(4+)(4)O(12) by structural refinement using synchrotron X-ray powder diffraction, hard X-ray photoemission, and soft X-ray absorption spectroscopy.
View Article and Find Full Text PDFWe have successfully synthesized a new rhenium-based hexagonal bronze material, HgxReO3, which exhibits superconductivity with the transition temperature Tc=7.7 K at ambient pressure and 11.1 K at 4 GPa.
View Article and Find Full Text PDFA novel A-site ordered perovskite CaCu(3)Pt(4)O(12) was synthesized under high pressure and high temperature of 12 GPa and 1250 degrees C. CaCu(3)Pt(4)O(12) is the first perovskite in which the B site is fully occupied by Pt(4+). The crystal structure refinement based on the synchrotron powder X-ray diffraction data shows that CaCu(3)Pt(4)O(12) crystallizes in the space group Im3 (cubic) with a lattice constant of a = 7.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.