Publications by authors named "Kenya Kaneko"

Action potentials are fundamental to relaying information from region to region in the nervous system. Changes in action potential firing patterns in neural circuits influence how the brain processes information. In our previous study, we focused on interneuron/perineuronal astrocyte pairs in the hippocampal CA1 region and reported that direct depolarization of perineuronal astrocytes modulated the firing pattern of interneurons.

View Article and Find Full Text PDF

Following activation of Gq protein-coupled receptors, phospholipase C yields a pair of second messengers: diacylglycerol (DG) and inositol 1,4,5-trisphosphate. Diacylglycerol kinase (DGK) phosphorylates DG to produce phosphatidic acid, another second messenger. Of the DGK family, DGKε is the only DGK isoform that exhibits substrate specificity for DG with an arachidonoyl acyl chain at the sn-2 position.

View Article and Find Full Text PDF

Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1).

View Article and Find Full Text PDF

The axonal conduction of action potentials in the nervous system is generally considered to be a stable signal for the relaying of information, and its dysfunction is involved in impairment of cognitive function. Recent evidence suggests that the conduction properties and excitability of axons are more variable than traditionally thought. To investigate possible changes in the conduction of action potentials along axons in the central nervous system, we recorded action potentials from granule cells that were evoked and conducted antidromically along unmyelinated mossy fibers in the rat hippocampus.

View Article and Find Full Text PDF

Plastic changes in white matter have received considerable attention in relation to normal cognitive function and learning. Oligodendrocytes and myelin, which constitute the white matter in the central nervous system, can respond to neuronal activity with prolonged depolarization of membrane potential and/or an increase in the intracellular Ca(2+) concentration. Depolarization of oligodendrocytes increases the conduction velocity of an action potential along axons myelinated by the depolarized oligodendrocytes, indicating that white matter shows functional plasticity, as well as structural plasticity.

View Article and Find Full Text PDF

We studied the synaptic plasticity of hippocampal CA1 neurons and spatial learning behavior in gerbils that had been loaded with a transient cerebral ischemia caused by 5 min or 10 min occlusion of the bilateral carotid arteries. The stimulus threshold to elicit the field responses after a transient cerebral ischemia was not different from that in controls, but there was a significant decrease in the magnitude of synaptic responses, which might result from the observed loss of neurons. Long-term potentiation (LTP) and depotentiation after a 10 min cerebral ischemia expressed as a percentage of the pre-tetanus or pre-low frequency stimulation value were almost the same as those in controls, although the actual magnitude of the LTP and depotentiation was lower than in controls.

View Article and Find Full Text PDF

Gangliosides (sialic acid-containing glycosphingolipids) play important roles in many physiological functions, including synaptic plasticity in the hippocampus, which has been suggested as the basal cellular process of learning and memory in the brain. In the present study, long-term potentiation (LTP) and long-term depression (LTD) in CA1 hippocampal neurons and learning behavior were examined in mice treated with (D)-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol ((D)-PDMP), an inhibitor of ganglioside biosynthesis. Mice treated with (D)-PDMP, but not those treated with (L)-PDMP, showed impairment of LTP induction in hippocampal CA1 neurons without any significant change in LTD formation and also showed a failure of learning in the 4-pellet taking test.

View Article and Find Full Text PDF

We investigated the role of inositol 1, 4, 5-trisphosphate receptors (IP3Rs), activated during preconditioning low-frequency afferent stimulation (LFS), in the subsequent induction of long-term potentiation (LTP) in CA3 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential (EPSP) by the delivery of high-frequency stimulation (HFS, a tetanus of two trains of 100 pulses at 100Hz with a 10s interval) to mossy fiber-CA3 neuron synapses was suppressed when CA3 synapses were preconditioned by the LFS of 1000 pulses at 2Hz and this effect was inhibited when the LFS preconditioning was performed in the presence of an IP3R antagonist or a protein phosphatase inhibitor. Furthermore, activation of group 1 metabotropic glutamate receptors (mGluRs) during HFS canceled the effects of an IP3R antagonist given during preconditioning LFS on the subsequent LTP induction at mossy fiber-CA3 synapses.

View Article and Find Full Text PDF

Gangliosides (sialic acid-containing glycosphingolipids) play important roles in many physiological functions, including synaptic plasticity in the hippocampus, which is considered as a cellular mechanism of learning and memory. In the present study, three types of synaptic plasticity, long-term potentiation (LTP), long-term depression (LTD) and reversal of LTP (depotentiation, DP), in the field excitatory post-synaptic potential in CA1 hippocampal neurons and learning behavior were examined in β1,4-N-acetylgalactosaminyltransferase (β1,4 GalNAc-T; GM2/GD2 synthase) gene transgenic (TG) mice, which showed a marked decrease in b-pathway gangliosides (GQ1b, GT1b and GD1b) in the brain and isolated hippocampus compared with wild-type (WT) mice. The magnitude of the LTP induced by tetanus (100 pulses at 100 Hz) in TG mice was significantly smaller than that in control WT mice, whereas there was no difference in the magnitude of the LTD induced by three short trains of low-frequency stimulation (LFS) (200 pulses at 1 Hz) at 20 min intervals between the two groups of mice.

View Article and Find Full Text PDF

Long-term potentiation (LTP) at hippocampal mossy fiber-CA3 pyramidal neuron synapses was induced in the field excitatory postsynaptic potential (EPSP) by the delivery of HFS (a tetanus of two trains of 100 pulses at 100 Hz with a 10s interval) and was reversed (depotentiated) by a train of LFS of 1000 pulses at 2 Hz applied 60 min later. This depotentiation was triggered by activation of inositol 1, 4, 5-trisphosphate receptors (IP3Rs) during HFS, which may increase the postsynaptic intracellular Ca(2+) concentration, leading to a cellular process responsible for modification of LTP expression at mossy fiber-CA3 synapses. Furthermore, we found that activation of IP3Rs or protein phosphatase during LFS was required for the reversal of LTP expressed at mossy fiber-CA3 synapses.

View Article and Find Full Text PDF

In the present study, mice lacking the type 1 inositol-1,4,5-trisphosphate receptor (IP(3)R) were used to study the role of type 1 IP(3)Rs in the induction of long-term potentiation (LTP) in hippocampal CA1 neurons. The magnitude of the LTP induced by high frequency stimulation (HFS) consisting of 20 pulses at 30Hz in mice lacking type 1 IP(3)Rs was significantly larger than that in wild-type mice in terms of the field excitatory postsynaptic potential and population spike. By measuring changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in CA1 pyramidal neurons using fluorometry, we found that the decay time of the transient increase in the [Ca(2+)](i) evoked by the HFS in mutant mice was significantly longer than that in wild-type mice, whereas the [Ca(2+)](i) at rest and the magnitude of the [Ca(2+)](i) increases caused by the HFS were no different from those in wild-type mice.

View Article and Find Full Text PDF

Oligodendrocytes have received much attention in relation to neurological and psychiatric disorders. The involvement of oligodendrocytes and their myelin in normal brain functions has been suggested by many lines of evidence. The conduction velocity of action potentials along axons is dramatically increased by myelination, that is, the formation of a passive insulator.

View Article and Find Full Text PDF

Like neurons and astrocytes, oligodendrocytes have a variety of neurotransmitter receptors and ion channels. However, except for facilitating the rapid conduction of action potentials by forming myelin and buffering extracellular K(+), little is known about the direct involvement of oligodendrocytes in neuronal activities. To investigate their physiological roles, we focused on oligodendrocytes in the alveus of the rat hippocampal CA1 region.

View Article and Find Full Text PDF

Previous pharmacological experiments provide conflicting findings that describe both facilitatory and inhibitory effects of neuronal histamine on learning and memory. Here, we examined learning and memory and synaptic plasticity in mice with a null mutation of gene coding histamine H1 or H2 receptor in order to clarify the role of these receptors in learning and memory processes. Learning and memory were evaluated by several behavioral tasks including object recognition, Barnes maze and fear conditioning.

View Article and Find Full Text PDF

Brain-type fatty acid-binding protein (B-FABP) belongs to a family of intracellular lipid-binding proteins. B-FABP exhibits a binding affinity to long-chain fatty acids (FAs) whose effects on brain functions including development, emotion, learning and memory have been proposed. B-FABP is localized in the ventricular germinal cells in embryonic brain and astrocytes in developing and mature brain of rodents.

View Article and Find Full Text PDF

The role of inositol 1, 4, 5-trisphosphate receptors (IP3Rs) in long-term potentiation (LTP) and long-term depression (LTD) was studied in CA1 neurons in guinea pig hippocampal slices. In standard solution, short tetanic stimulation consisting of 15 pulses at 100 Hz induced LTP, while three short trains of low-frequency stimulation (LFS; 200 pulses at 1 Hz) at 18-min intervals or one long train of LFS (1000 pulses at 1 Hz) induced stable LTD in both the slope of the field EPSP (S-EPSP) and the amplitude of the population spike (A-PS). Bath application of 2-aminoethoxydiphenyl borate (2-APB), an IP3R antagonist, or of alpha-methyl-4-carboxyphenylglycine (MCPG), a wide-spectrum metabotropic glutamate receptor antagonist, during weak tetanic stimulation significantly increased the magnitude of the LTP in both the S-EPSP and A-PS.

View Article and Find Full Text PDF

The present study has investigated the role of ATP in the induction of synaptic plasticity, using local application of ATP by picopump administration into the stratum radiatum of guinea pig hippocampal region CA1. Excitatory postsynaptic currents (EPSCs) evoked by stimulation of Schaffer collateral/commissural afferents synapsing on CA1 pyramidal cells of hippocampal slices were monitored in voltage-clamp mode, using whole-cell recording. Brief local application of ATP (1 mM) induced an inward current, usually consisting of early- and late-phase components.

View Article and Find Full Text PDF

1. Temperature-dependent properties of synaptic transmission were studied by recording orthodromic responses of the population spike and excitatory postsynaptic potential in CA1 pyramidal neurons of guinea pig hippocampal slices. 2.

View Article and Find Full Text PDF

The effects of the mono- and tetrasialogangliosides, GM1 and GQ1b, on ATP-induced long-term potentiation (LTP) were studied in CA1 neurons of guinea pig hippocampal slices. Application of 5 or 10 microM ATP for 10 min resulted in a transient depression followed by a slow augmentation of synaptic transmission, leading to LTP. LTP induced by treatment with 5 microM ATP was facilitated in hippocampal slices prepared from animals treated for 6 days with a ceramide analog, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propranol, which stimulates ganglioside biosynthesis.

View Article and Find Full Text PDF