Publications by authors named "Kenya E Fernandes"

Fungi are increasingly recognized to play diverse roles within honey bee hives, acting as pathogens, mutualists, and commensals. Pollen products, essential for hive nutrition, host significant fungal communities with potential protective and nutritional benefits. In this study, we profile the fungal communities and antifungal properties of three pollen products from healthy and stressed hives: fresh pollen collected by forager bees from local plants; stored pollen packed into the comb inside the hive; and bee bread, which is stored pollen following anaerobic fermentation used for bee and larval nutrition.

View Article and Find Full Text PDF

The growing burden of expired medicines contributes to environmental contamination and landfill waste accumulation. Medicinal honey, with its non-toxic nature and potentially long shelf-life, represents a promising and underutilised therapeutic that avoids some of these issues. However, limited knowledge on how its antimicrobial properties change over time combined with a lack of reliable processes in the honey industry for measuring antimicrobial potential, hinder its clinical adoption.

View Article and Find Full Text PDF

Honey produced by the Australian honeypot ant () is valued nutritionally and medicinally by Indigenous peoples, but its antimicrobial activity has never been formally studied. Here, we determine the activity of honeypot ant honey (HPAH) against a panel of bacterial and fungal pathogens, investigate its chemical properties, and profile the bacterial and fungal microbiome of the honeypot ant for the first time. We found HPAH to have strong total activity against but not against other bacteria, and strong non-peroxide activity against and sp.

View Article and Find Full Text PDF

Honey bees (Apis mellifera) face increasing threats to their health, particularly from the degradation of floral resources and chronic pesticide exposure. The properties of honey and the bee gut microbiome are known to both affect and be affected by bee health. Using samples from healthy hives and hives showing signs of stress from a single apiary with access to the same floral resources, we profiled the antimicrobial activity and chemical properties of honey and determined the bacterial and fungal microbiome of the bee gut and the hive environment.

View Article and Find Full Text PDF

Honey has a long history of use for the treatment of digestive ailments. Certain honey types have well-established bioactive properties including antibacterial and anti-inflammatory activities. In addition, honey contains non-digestible carbohydrates in the form of oligosaccharides, and there is increasing evidence from , animal, and pilot human studies that some kinds of honey have prebiotic activity.

View Article and Find Full Text PDF

Honey is the source of energy for the European honey bee, . Beyond simple nutrition and a hedge against the seasonal, geographic, and chemical unpredictability of nectar, honey has properties that protect the hive against various stresses. Enzyme-mediated detoxification during honey ripening neutralizes potentially toxic phytochemicals, and bees that consume honey have enhanced tolerance to other ingested toxins.

View Article and Find Full Text PDF

The pathogenic yeast Cryptococcus neoformans causes nearly 200,000 deaths annually in immunocompromised individuals. Cryptococcus cells can undergo substantial morphological change during mammalian infection, including increased capsule and cell size, the release of shed capsule, and the production of titan (>10 μm), micro (<2 μm)-, and irregular cells. We examined phenotypic variation under conditions designed to simulate stress in a collection of nine lineages derived from the C.

View Article and Find Full Text PDF

Lactoferrin (LF) is an iron-binding glycoprotein with broad-spectrum antimicrobial activity. Previously, we discovered that LF synergistically enhanced the antifungal efficacy of amphotericin B (AMB) across a variety of yeast species and subsequently hypothesized that this synergy was enhanced by the presence of small peptides derived from the whole LF molecule. In this study, LF was digested with pepsin under a range of conditions.

View Article and Find Full Text PDF

Lactoferrin (LF) is a multifunctional milk protein with antimicrobial activity against a range of pathogens. While numerous studies report that LF is active against fungi, there are considerable differences in the level of antifungal activity and the capacity of LF to interact with other drugs. Here we undertook a comprehensive evaluation of the antifungal spectrum of activity of three defined sources of LF across 22 yeast and 24 mold species and assessed its interactions with six widely used antifungal drugs.

View Article and Find Full Text PDF

Pathogenic species of cause hundreds of thousands of deaths annually. Considerable phenotypic variation is exhibited during infection, including increased capsule size, capsule shedding, giant cells (≥15 μm), and micro cells (≤1 μm). We examined 70 clinical isolates of and from HIV/AIDS patients in Botswana to determine whether the capacity to produce morphological variants was associated with clinical parameters.

View Article and Find Full Text PDF

Lactoferrin is a multifunctional iron-binding glycoprotein belonging to the transferrin family. It is found abundantly in milk and is present as a major protein in human exocrine secretions where it plays a role in the innate immune response. Various antifungal functions of lactoferrin have been reported including a wide spectrum of activity across yeasts and molds and synergy with other antifungal drugs in combination therapy, and various modes of action have been proposed.

View Article and Find Full Text PDF

causes invasive fungal infections that have been increasing in incidence and global distribution in recent years. The major molecular genotypes of that were previously classified as VGI to VGIV have recently been described as four new species: (VGI), (VGII), (VGIII), and (VGIV). The main driver for their classification has been phylogeny, and phenotypic diversity has not yet been extensively characterized.

View Article and Find Full Text PDF