The mechanism of (PCP)Ir-catalyzed transfer-dehydrogenation has been elucidated for the prototypical substrate/acceptor couple, COA/TBE, at 55 degrees C (COA = cyclooctane; TBE = tert-butylethylene). The catalytic cycle may be viewed as the sum of two reactions: (i) hydrogenation of TBE by (PCP)IrH2 and C-H addition of a second mole of TBE to give (PCP)IrH(tert-butylvinyl), and (ii) dehydrogenation of COA by (PCP)IrH(tert-butylvinyl) to give (PCP)IrH2, COE, and TBE. These two stoichiometric reactions have been observed independently and their kinetics determined.
View Article and Find Full Text PDFPincer complexes of the type ((R)PCP)IrH(2), where ((R)PCP)Ir is [eta(3)-2,6-(R(2)PCH(2))(2)C(6)H(3)]Ir, are the most effective catalysts reported to date for the "acceptorless" dehydrogenation of alkanes to yield alkenes and free H(2). We calculate (DFT/B3LYP) that associative (A) reactions of ((Me)PCP)IrH(2) with model linear (propane, n-PrH) and cyclic (cyclohexane, CyH) alkanes may proceed via classical Ir(V) and nonclassical Ir(III)(eta(2)-H(2)) intermediates. A dissociative (D) pathway proceeds via initial loss of H(2), followed by C-H addition to ((Me)PCP)Ir.
View Article and Find Full Text PDFThe thermodynamics of small-molecule (H(2), arene, alkane, and CO) addition to pincer-ligated iridium complexes of several different configurations (three-coordinate d(8), four-coordinate d(8), and five-coordinate d(6)) have been investigated by computational and experimental means. The substituent para to the iridium (Y) has been varied in complexes containing the (Y-PCP)Ir unit (Y-PCP = eta(3)-1,3,5-C(6)H(2)[CH(2)PR(2)](2)Y; R = methyl for computations; R = tert-butyl for experiments); substituent effects have been studied for the addition of H(2), C-H, and CO to the complexes (Y-PCP)Ir, (Y-PCP)Ir(CO), and (Y-PCP)Ir(H)(2). Para substituents on arenes undergoing C-H bond addition to (PCP)Ir or to (PCP)Ir(CO) have also been varied computationally and experimentally.
View Article and Find Full Text PDF1J(H-D), T(1min) and k(1) for H(2) dissociation from OsHX(H(2))(CO)L(2) have been measured for X = Cl, I, H (L = P(t-Bu)(2)Me or P(i-Pr)(3)), as well as for OsCl(2)(H(2))(CO)(P(i-Pr)(3))(2). For comparison, new data (including previously unobserved coupling constants) have been reported for W(HD)(CO)(3)(P(i-Pr)(3))(2). A comprehensive consideration of T(1min) data for over 20 dihydrogen complexes containing only 1-2 phosphines cis to H(2), together with a consideration of the shortest "conceivable" H-H distance for H(2) bound to a d(4) or d(6) metal, is used to argue that the "fast spinning" model is not appropriate for determining r(H-H) in such complexes.
View Article and Find Full Text PDF