Objective: A number of tissue penetrating opto-electrodes to simultaneously record and optogenetically influence brain activity have been developed. For experiments at the surface of the brain, such as electrocorticogram (ECoG) recordings and surface optogenetics, fewer devices have been described and no device has found widespread adoption for neuroscientific experiments. One issue slowing adoption is the complexity and fragility of existing devices, typically based on transparent electrode materials like graphene and indium-tin oxide (ITO).
View Article and Find Full Text PDFNat Commun
February 2020
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFFunctional plasticity of the brain decreases during ageing causing marked deficits in contextual learning, allocentric navigation and episodic memory. Adult neurogenesis is a prime example of hippocampal plasticity promoting the contextualisation of information and dramatically decreases during ageing. We found that a genetically-driven expansion of neural stem cells by overexpression of the cell cycle regulators Cdk4/cyclinD1 compensated the age-related decline in neurogenesis.
View Article and Find Full Text PDFOptogenetics is one of the most important techniques in neurophysiology, with potential clinical applications. However, the strong light needed may cause harmful temperature rises. So far, there are no methods to reliably estimate brain heating and safe limits in actual optogenetic experiments.
View Article and Find Full Text PDFNeuronal populations with unbalanced inhibition can generate interictal spikes (ISs), where each IS starts from a small initiation site and then spreads activation across a larger area. We used in vivo voltage-sensitive dye imaging to map the initiation site of ISs in rat visual cortex disinhibited by epidural application of bicuculline methiodide. Immediately after the application of bicuculline, the IS initiation sites were widely distributed over the entire disinhibited area.
View Article and Find Full Text PDFPeriodic lateralized epileptiform discharges (PLEDs) are an electroencephalographic pattern recorded in the setting of a variety of brain abnormalities. It is best recognized for its association with acute viral encephalitis, stroke, tumor, or latestatus epilepticus. However, there are other conditions that have been recognized as the underlying pathology for PLEDs such as alcohol withdrawal, Creutzfeldt-Jacob disease, anoxic brain injury, and hemiplegic migraine.
View Article and Find Full Text PDFObjective: Early detection of autism is critical for effective intervention, but currently, no simple screening tests are available. Furthermore, little is known about the development of brain dynamics in young children. We examine the early neurophysiological manifestations of autism by retrospectively analyzing EEG.
View Article and Find Full Text PDFBackground: Propagating waves of excitation have been observed extensively in the neocortex, during both spontaneous and sensory-evoked activity, and they play a critical role in spatially organizing information processing. However, the state-dependence of these spatiotemporal propagation patterns is largely unexplored. In this report, we use voltage-sensitive dye imaging in the rat visual cortex to study the propagation of spontaneous population activity in two discrete cortical states induced by urethane anesthesia.
View Article and Find Full Text PDFPerception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent.
View Article and Find Full Text PDFJ Pediatr Gastroenterol Nutr
August 2011
J Neurosci Methods
September 2011
Voltage-sensitive dye imaging (VSDI) allows population patterns of cortical activity to be recorded with high temporal resolution, and recent findings ascribe potential significance to these spatial propagation patterns--both for normal cortical processing and in pathologies such as epilepsy. However, analysis of these spatiotemporal patterns has been mostly qualitative to date. In this report, we describe an algorithm to quantify fast local flow patterns of cortical population activation, as measured with VSDI.
View Article and Find Full Text PDFAlthough spiral waves are ubiquitous features of nature and have been observed in many biological systems, their existence and potential function in mammalian cerebral cortex remain uncertain. Using voltage-sensitive dye imaging, we found that spiral waves occur frequently in the neocortex in vivo, both during pharmacologically induced oscillations and during sleep-like states. While their life span is limited, spiral waves can modify ongoing cortical activity by influencing oscillation frequencies and spatial coherence and by reducing amplitude in the area surrounding the spiral phase singularity.
View Article and Find Full Text PDFIn general, signal amplitude in optical imaging is normalized using the well-established DeltaF/F method, where functional activity is divided by the total fluorescent light flux. This measure is used both directly, as a measure of population activity, and indirectly, to quantify spatial and spatiotemporal activity patterns. Despite its ubiquitous use, the stability and accuracy of this measure has not been validated for voltage-sensitive dye imaging of mammalian neocortex in vivo.
View Article and Find Full Text PDFIn the cortex, neural responses to crossmodal stimulation are seen both in higher association areas and in primary sensory areas, and are thought to play a role in integration of crossmodal sensations. We used voltage-sensitive dye imaging (VSDI) to study the spatiotemporal characteristics of such crossmodal neural activity. We imaged three cortical regions in rat: primary visual cortex (V1), barrel field of primary somatosensory cortex (S1bf) and parietal association area (PA, flanked by V1 and S1bf).
View Article and Find Full Text PDFNeuronal interactions between primary and secondary visual cortical areas are important for visual processing, but the spatiotemporal patterns of the interaction are not well understood. We used voltage-sensitive dye imaging to visualize neuronal activity in rat visual cortex and found visually evoked waves propagating from V1 to other visual areas. A primary wave originated in the monocular area of V1 and was "compressed" when propagating to V2.
View Article and Find Full Text PDFWe describe methods to achieve high sensitivity in voltage-sensitive dye (VSD) imaging from rat barrel and visual cortices in vivo with the use of a blue dye RH1691 and a high dynamic range imaging device (photodiode array). With an improved staining protocol and an off-line procedure to remove pulsation artifact, the sensitivity of VSD recording is comparable with that of local field potential recording from the same location. With this sensitivity, one can record from approximately 500 individual detectors, each covering an area of cortical tissue 160 microm in diameter (total imaging field approximately 4 mm in diameter) and a temporal resolution of 1,600 frames/s, without multiple-trial averaging.
View Article and Find Full Text PDFDistinct alpha subunit subtypes in the molecular assembly of GABA(A) receptors are a critical determinant of the functional properties of inhibitory synapses and their modulation by a range of pharmacological agents. We investigated the contribution of these subunits to the developmental changes of inhibitory synapses in cerebellar granule neurons in primary cultures from wild-type and alpha1 subunit -/- mice. The decay time of miniature inhibitory postsynaptic currents (mIPSCs) halved between 6 days in vitro (DIV6) and DIV12.
View Article and Find Full Text PDF