Publications by authors named "Kentaro Hozumi"

Wet age-related macular degeneration (AMD) and diabetic retinopathy are the leading causes of blindness through increased angiogenesis. Although VEGF-neutralizing proteins provide benefit, inconsistent responses indicate a need for new therapies. We previously identified the Fibulin-7 C-terminal fragment (Fbln7-C) as an angiogenesis inhibitor in vitro.

View Article and Find Full Text PDF

Human laminin-511 (α5β1γ1) and its truncated protein, laminin-511 E8 fragment, bind to integrin α6β1 and have been widely used for embryonic stem cell and induced pluripotent stem cell culture under feeder-free conditions. In this study, we focused on human laminin α5 chain G domain, which is thought to be critical for the biological functions of laminin-511, and screened its biologically active sequences using a synthetic peptide library. We synthesized 115 peptides (hA5G1-hA5G115) covering the entire laminin α5 chain G domain and evaluated cell attachment activity using both the peptide-coated plate and peptide-chitosan matrix (peptide-ChtM) assays.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) grow indefinitely in culture and have the potential to regenerate various tissues. In the development of cell culture systems, a fragment of laminin-511 (LM511-E8) was found to improve the proliferation of stem cells. The adhesion of undifferentiated cells to LM511-E8 is mainly mediated through integrin α6β1.

View Article and Find Full Text PDF

Extracellular matrix molecules are recognized by several integrin subtypes, making identification of cross-talk among different integrin subtypes difficult. Here, we evaluated the cross-talk of integrin subtypes using four different integrin-binding peptides (FIB1; integrin αvβ3/α5β1, A2G10; integrin α6β1, EF1zz; integrin α2β1, or 531; integrin α3β1) derived from extracellular matrix molecules. Various combinations of two different integrin-binding peptides were mixed and conjugated on a chitosan matrix at various molar ratios and were evaluated for cell attachment activity.

View Article and Find Full Text PDF

Biomaterials are important for cell and tissue engineering. Chitosan is widely used as a scaffold because it is easily modified using its amino groups, can easily form a matrix, is stable under physiological conditions, and is inactive for cell adhesion. Chitosan is an excellent platform for peptide ligands, especially cell adhesive peptides derived from extracellular matrix (ECM) proteins.

View Article and Find Full Text PDF

Many cell-adhesive peptides have been identified from extracellular matrix (ECM) proteins, such as collagen, fibronectin, laminin, and vitronectin. ECM proteins have various cell-adhesive sequences. Most peptides demonstrate cell-adhesive activity when simply coated on a tissue culture plate, but solubility, conformation, and coating efficiency of the peptides can significantly alter their biological function.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are attractive in cancer therapy because they can directly bind to cancer cells and provide anticancer activity. To kill cancer cells with ADCs, the target antigens are required not only to be highly and/or selectively expressed on cancer cells but also internalized by the cells. CD239, also known as the Lutheran blood group glycoprotein (Lu) or basal cell adhesion molecule (B-CAM), is a specific receptor for laminin α5, a major component of basement membranes.

View Article and Find Full Text PDF

The first rapid and efficient chemical synthesis of a cyclic Arg-Gly-Asp (RGD) peptide containing a chloroalkene dipeptide isostere (CADI) is reported. By a developed synthetic method, an --butylsulfonyl protected CADI was obtained utilizing diastereoselective allylic alkylation as a key reaction. This CADI was also transformed into an -Fmoc protected CADI in a few steps.

View Article and Find Full Text PDF

Laminin-511, a major component of endothelial basement membrane, consists of α5, β1, and γ1 chains. The short arm region of the α5 chain is a structural feature of endothelial laminins. In this study, we identified active sequences for human umbilical vein endothelial cells (HUVECs) using recombinant proteins and synthetic peptides.

View Article and Find Full Text PDF

The Lutheran glycoprotein (Lu), also known as basal cell adhesion molecule (B-CAM), is an Ig superfamily (IgSF) transmembrane receptor for laminin α5. Although Lu is not present in normal hepatocytes, its expression is significantly increased in hepatocellular carcinoma (HCC). In this study, we isolated thirteen phage antibodies to Lu from a phage library of peripheral blood from HCC patients, suggesting that these patients produced autoantibodies against endogenous Lu.

View Article and Find Full Text PDF

Mimicking the biological function of the extracellular matrix is an approach to developing cell adhesive biomaterials. The RGD peptide, derived from fibronectin (Fn), mainly binds to integrin αvβ3 and has been widely used as a cell adhesive peptide on various biomaterials. However, cell adhesion to Fn is thought to be mediated by several integrin subtypes and syndecans.

View Article and Find Full Text PDF

Peptide-conjugated polysaccharide matrices using bioactive laminin-derived peptides are useful biomaterials for tissue and cell engineering. Here, we demonstrate an easy handling preparation method for peptide-polysaccharide matrices using polyion complex with both alginate and chitosan. First, aldehyde-alginate was synthesized by oxidization of alginate using NaIO , and then, reacted with Cys-peptides.

View Article and Find Full Text PDF

Epithelial cells, both normal and precancerous, stably anchor to basement membranes, whereas malignant tumors pass through them to achieve metastasis. Of basement membrane components, laminin-511 (α5, β1, γ1; LM-511) has been found to be a major isoform in many adult basement membranes. Several studies have shown that LM-511 promotes not only cell adhesion but also tumor cell migration.

View Article and Find Full Text PDF

Peptides with cell attachment activity are beneficial component of biomaterials for tissue engineering. Conformational structure is one of the important factors for the biological activities. The EF1 peptide (DYATLQLQEGRLHFMFDLG) derived from laminin promotes cell spreading and cell attachment activity mediated by α2β1 integrin.

View Article and Find Full Text PDF

Peptide-polysaccharide matrices can mimic extracellular matrix structure and function and are useful for tissue and cell engineering. The spacer between the peptide and the polysaccharide is important for both peptide conformation and the interaction between the peptide and receptors. Here, the effect of a spacer on the biological activity of peptide-polysaccharide matrices using various lengths of spacers consisting of glycine, β-alanine, and ε-aminocaproic acid has been examined.

View Article and Find Full Text PDF

Despite the research done on pathological angiogenesis, there is still a need for the development of new therapies against angiogenesis-related diseases. Fibulin-7 (Fbln7) is a member of the extracellular matrix fibulin protein family. The Fbln7 C-terminal fragment, Fbln7-C, binds to endothelial cells and inhibits their tube formation in culture.

View Article and Find Full Text PDF

Crosstalk of different integrins, which bind to distinct types of extracellular matrix proteins, promotes specific functions. This crosstalk has not been investigated in depth. Previously, we demonstrated that integrin-syndecan crosstalk accelerated cell adhesion.

View Article and Find Full Text PDF

An amyloidogenic LAM-L peptide (AASIKVAVSADR, all-L configuration) derived from laminin promoted cell adhesion, neurite outgrowth, and angiogenesis. Here, we prepared novel matrices using double-stranded DNA and the LAM-L peptide. Double-stranded DNA promoted aggregation of amyloid-like fibrils and generated a LAM-L/DNA matrix through electrostatic interactions between the phosphate groups of DNA and the amino groups of LAM-L.

View Article and Find Full Text PDF

Lutheran (Lu), an immunoglobulin superfamily transmembrane receptor, is also known as basal cell adhesion molecule (B-CAM). Lu/B-CAM is a specific receptor for laminin α5, a subunit of laminin-511 (LM-511) that is a major component of basement membranes in various tissues. Our previous study showed that Lu/B-CAM was cleaved by MT1-MMP and released from cell surfaces.

View Article and Find Full Text PDF

Each laminin α chain (α1-α5 chains) has chain-specific diverse biological functions. The C-terminal globular domain of the α chain consists of five laminin-like globular (LG1-5) modules and plays a critical role in biological activities. The LG modules consist of a 14-stranded β-sheet (A-N) sandwich structure.

View Article and Find Full Text PDF

Laminins, major components of basement membrane, consist of three different subunits, α, β, and γ chains, and so far, five α, three β, and three γ chains have been identified. We have constructed synthetic peptide libraries derived from the laminin sequences and identified various cell-adhesive peptides. Ten active peptides from the laminin α chain sequences (α1-α5) were found to promote integrin-mediated cell adhesion.

View Article and Find Full Text PDF

Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration.

View Article and Find Full Text PDF

Laminins are a multifunctional molecule with numerous active sites that have been identified in short peptide sequences. Mixed peptide-conjugated chitosan membranes using laminin-derived active peptides have been previously demonstrated to be useful as a biomaterial for tissue engineering. In this study, two syndecan-binding peptides, AG73 (RKRLQVQLSIRT) and C16 (KAFDITYVRLKF), and three integrin-binding peptides, EF1zz (ATLQLQEGRLHFXFDLGKGR, X: Nle, binding to integrin α2β1), A99a (ALRGDN, binding to integrin αvβ3), and A2G10 (SYWYRIEASRTG, binding to integrin α6β1), were mixed in various combinations, conjugated to chitosan membranes, and evaluated for their cell attachment and spreading activities.

View Article and Find Full Text PDF

We have identified a number of cell-adhesive peptides from laminins, a major component of basement membranes. Cell-adhesive peptides derived from basement membrane proteins are potential candidates for incorporating cell-binding activities into scaffold materials for tissue engineering. Our goal is development of a chemically synthetic basement membrane using laminin-derived cell-adhesive peptides and polymeric materials.

View Article and Find Full Text PDF

Laminin-111 is a large trimeric basement membrane glycoprotein with many active sites. In particular, four peptides active in tumor malignancy studies have been identified in laminin-111 using a systematic peptide screening method followed by various assays. Two of the peptides (IKVAV and AG73) are found on the α1 chain, one (YIGSR) of the β1 chain and one (C16) on the γ1 chain.

View Article and Find Full Text PDF