In vitro blood-brain barrier (BBB) models are essential research tools for use in developing brain-targeted drugs and understanding the physiological and pathophysiological functions of the BBB. To develop BBB models with better functionalities, three-dimensional (3D) culture methods have gained significant attention as a promising approach. In this study, we report on the development of a human conditionally immortalized cell-based multicellular spheroidal BBB (hiMCS-BBB) model.
View Article and Find Full Text PDFInfiltration of peripheral immune cells after blood-brain barrier dysfunction causes severe inflammation after a stroke. Although the endothelial glycocalyx, a network of membrane-bound glycoproteins and proteoglycans that covers the lumen of endothelial cells, functions as a barrier to circulating cells, the relationship between stroke severity and glycocalyx dysfunction remains unclear. In this study, glycosaminoglycans, a component of the endothelial glycocalyx, were studied in the context of ischemic stroke using a photochemically induced thrombosis mouse model.
View Article and Find Full Text PDFBrain microvascular endothelial cells (BMEC), together with astrocytes and pericytes, form the blood-brain barrier (BBB) that strictly restricts drug penetration into the brain. Therefore, in central nervous system drug development, the establishment of an human BBB model for use in studies estimating the human BBB permeability of drug candidates has long been awaited. The current study developed and characterized a human immortalized cell-based BBB triculture model, termed the "hiBBB" model.
View Article and Find Full Text PDFAstrocytes have shown longstanding promise as therapeutic targets for various central nervous system diseases. To facilitate drug development targeting astrocytes, we have recently developed a new conditionally immortalized human astrocyte cell line, termed HASTR/ci35 cells. In this study, in order to further increase their chances to contribute to various astrocyte studies, we report on the development of a culture method that improves HASTR/ci35 cell differentiation status and provide several proofs related to their astrocyte characteristics.
View Article and Find Full Text PDFSerum soluble CD40 ligand (sCD40L) has been reported to positively correlate with the albumin quotient, a marker of blood-brain barrier (BBB) breakdown, in patients with multiple sclerosis (MS). To clarify the mechanisms of sCD40L in MS pathophysiology, sCD40L was administered to experimental autoimmune encephalomyelitis (EAE) mice and a human brain microvascular endothelial cell (HBMEC)-based BBB model. The high-dose sCD40L group showed a worse EAE score than the low-dose and control groups.
View Article and Find Full Text PDFWhile pericytes wrap around microvascular endothelial cells throughout the human body, their highest coverage rate is found in the brain. Brain pericytes actively contribute to various brain functions, including the development and stabilization of the blood-brain barrier (BBB), tissue regeneration, and brain inflammation. Accordingly, detailed characterization of the functional nature of brain pericytes is important for understanding the mechanistic basis of brain physiology and pathophysiology.
View Article and Find Full Text PDF