Understanding why some patients with depression remain resistant to antidepressant medication could be elucidated by investigating their associated neural features. Although research has consistently demonstrated abnormalities in the anterior cingulate cortex (ACC) - a region that is part of the default mode network (DMN) - in treatment-resistant depression (TRD), a considerable research gap exists in discerning how these neural networks distinguish TRD from treatment-sensitive depression (TSD). We aimed to evaluate the resting-state functional connectivity (rsFC) of the ACC with other regions of the DMN to better understand the role of this structure in the pathophysiology of TRD.
View Article and Find Full Text PDFBackground: A significant proportion of patients with major depressive disorder are resistant to antidepressant medication and psychological treatments. A core symptom of treatment-resistant depression (TRD) is anhedonia, or the inability to feel pleasure, which has been attributed to disrupted habenula function - a component of the reward network. This study aimed to map detailed neural circuitry architecture related to the habenula to identify neural mechanisms of TRD.
View Article and Find Full Text PDFThe effect of excitatory synaptic input on the excitation of the cell body is believed to vary depending on where and when the synaptic activation occurs in dendritic trees and the spatiotemporal modulation by inhibitory synaptic input. However, few studies have examined how individual synaptic inputs influence the excitability of the cell body in spontaneously active neuronal networks mainly because of the lack of an appropriate method. We developed a calcium imaging technique that monitors synaptic inputs to hundreds of spines from a single neuron with millisecond resolution in combination with whole-cell patch-clamp recordings of somatic excitation.
View Article and Find Full Text PDFThe primary sensory neocortex generates an internal representation of the environment, and its circuit reorganization is thought to lead to a modification of sensory perception. This reorganization occurs primarily through activity-dependent plasticity and has been well documented in animals during early developmental stages. Here, we describe a new method for the noninvasive induction of long-term plasticity in the mature brain: simple transient visual stimuli (i.
View Article and Find Full Text PDFUnlabelled: The primary visual cortex exhibits a late, long response with a latency of >300 ms and an immediate early response that occurs ∼100 ms after a visual stimulus. The late response is thought to contribute to visual functions such as sensory perception, iconic memory, working memory, and forming connections between temporally separated stimuli. However, how the visual late response is generated and organized is not completely understood.
View Article and Find Full Text PDFAstrocytes in various brain regions exhibit spontaneous intracellular calcium elevations both in vitro and in vivo; however, neither the temporal pattern underlying this activity nor its function has been fully evaluated. Here, we utilized a long-term optical imaging technique to analyze the calcium activity of more than 4000 astrocytes in acute hippocampal slices as well as in the neocortex and hippocampus of head-restrained mice. Although astrocytic calcium activity was largely sparse and irregular, we observed a subset of cells in which the fluctuating calcium oscillations repeated at a regular interval of ∼30 s.
View Article and Find Full Text PDFAnimals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features.
View Article and Find Full Text PDFThe networks of neocortical neurons are coordinated by spontaneous activity, the level of which exhibits high heterogeneity among neurons, ranging from low activity levels to very high activity levels, even in the same network. Highly active neurons represent a small proportion in the cerebral cortex and are mingled in a web of the vast majority of neurons with low firing rates. However, little is known about the spatial arrangement of these highly active cells within the cerebral cortex.
View Article and Find Full Text PDFAnimals collect sensory information through self-generated movements. Muscle movements drive active feedback of sensory information and determine large parts of the sensory inputs the animal receives; however, little is known about how this active feedback process modulates the ongoing dynamics of the brain. We made electrophysiological recordings from layer 2/3 neurons of the mouse neocortex and compared spontaneous cortical activity in local field potentials and intracellular potential fluctuations between normal and hypomyotonic conditions.
View Article and Find Full Text PDF