Publications by authors named "Kenta Arai"

Disulfide formation generally involves a two-electron oxidation reaction between cysteine residues. Additionally, disulfide formation is an essential post-translational modification for the structural maturation of proteins. This oxidative folding is precisely controlled by an electron relay network constructed by protein disulfide isomerase (PDI), with a CGHC sequence as the redox-active site, and its family enzymes.

View Article and Find Full Text PDF

Human relaxin-2 (H2 relaxin) is a peptide hormone of about 6 kDa, first identified as a reproductive hormone involved in vasoregulation during pregnancy. It has recently attracted strong interest because of its diverse functions, including anti-inflammatory, anti-fibrotic, and vasodilatory, and has been suggested as a potential peptide-based drug candidate for a variety of diseases. Mature H2 relaxin is constituted by the A- and B-chains stabilized by two interchain disulfide (SS) bridges and one intrachain SS linkage.

View Article and Find Full Text PDF

Glycans cover the cell surface to form the glycocalyx, which governs a myriad of biological phenomena. However, understanding and regulating glycan functions is extremely challenging due to the large number of heterogeneous glycans that engage in intricate interaction networks with diverse biomolecules. Glycocalyx-editing techniques offer potent tools to probe their functions.

View Article and Find Full Text PDF

Compounds harboring high acidity and oxidizability of thiol groups permit tuning the redox equilibrium constants of CxxC sites of members of the protein disulphide isomerase (PDI) family and thus can be used to accelerate folding processes and increase the production of native proteins by minimal loading in comparison to glutathione.

View Article and Find Full Text PDF

Seleno-insulin, a class of artificial insulin analogs, in which one of the three disulfide-bonds (S-S's) of wild-type insulin (Ins) is replaced by a diselenide-bond (Se-Se), is attracting attention for its unique chemical and physiological properties that differ from those of Ins. Previously, we pioneered the development of a [C7U,C7U] analog of bovine pancreatic insulin (SeIns) as the first example, and demonstrated its high resistance against insulin-degrading enzyme (IDE). In this study, the conditions for the synthesis of SeIns via native chain assembly (NCA) were optimized to attain a maximum yield of 72%, which is comparable to the in vitro folding efficiency for single-chain proinsulin.

View Article and Find Full Text PDF

We report the first example of a synthetic thiol-based compound that promotes oxidative protein folding upon 1-equivalent loading to the disulfide bonds in the client protein to afford the native form in over 70% yield. -Methylation is a central post-translational processing of proteins for regulating functions including chaperone activities. Despite the universally observed biochemical reactions in nature, -methylation has hardly been utilized in the design, functionalization, and switching of synthetic bioregulatory agents, particularly folding promotors.

View Article and Find Full Text PDF

Systemically administered lipid nanoparticles (LNPs) are complexed with Apolipoprotein E (ApoE) in the bloodstream, and the complex is subsequently largely taken up by hepatocytes. Based on a previous report showing that, like blood, lymph fluid also contains ApoE, and that LECs, in turn, expresses a low density-lipoprotein receptor (LDLR), which is the receptor responsible for the ApoE-bound LNP, we hypothesized that subcutaneously administered LNPs would be taken up by LECs via an ApoE-LDLR pathway. Our in vitro studies using immortal LECs that we established in a previous study showed that LEC indeed took up LNPs in an ApoE-dependent manner.

View Article and Find Full Text PDF

Type-1 iodothyronine deiodinase (ID-1) catalyzes the reductive elimination of 5'-I and 5-I on the phenolic and tyrosyl rings of thyroxine (T4), respectively. Chemically verifying whether I atoms with different chemical properties undergo deiodination through a common mechanism is challenging. Herein, we report the modeling of ID-1 using aliphatic diselenide (Se-Se) and selenenylsulfide (Se-S) compounds.

View Article and Find Full Text PDF

In a previous study, we reported that ()-1,2-diselenane-4-amine () catalyzes oxidative protein folding through protein disulfide isomerase (PDI)-like catalytic mechanisms and that the direct conjugation of a basic amino acid (Xaa: His, Lys, or Arg) via an amide bond improves the catalytic activity of by increasing its diselenide (Se-Se) reduction potential ('°). In this study, to modulate the Se-Se redox properties and the association of the compounds with a protein substrate, new catalysts, in which a Gly spacer was inserted between and Xaa, were synthesized. Exhaustive comparison of the PDI-like catalytic activities and '° values among , -Xaa, and -Gly-Xaa showed that the insertion of a Gly spacer into -Xaa either did not change or slightly reduced the PDI-like activity and the '° values.

View Article and Find Full Text PDF

AKT is a serine/threonine kinase that plays an important role in metabolism, cell growth, and cytoskeletal dynamics. AKT is activated by two kinases, PDK1 and mTORC2. Although the regulation of PDK1 is well understood, the mechanism that controls mTORC2 is unknown.

View Article and Find Full Text PDF

This study developed dipeptide-conjugated 1,2-diselenan-4-amine (1), i. e., 1-Xaa-His, as a new class of S-denitrosylase mimic.

View Article and Find Full Text PDF

In the last few decades, development of novel experimental techniques, such as new types of disulfide (SS)-forming reagents and genetic and chemical technologies for synthesizing designed artificial proteins, is opening a new realm of the oxidative folding study where peptides and proteins can be folded under physiologically more relevant conditions. In this review, after a brief overview of the historical and physicochemical background of oxidative protein folding study, recently revealed folding pathways of several representative peptides and proteins are summarized, including those having two, three, or four SS bonds in the native state, as well as those with odd Cys residues or consisting of two peptide chains. Comparison of the updated pathways with those reported in the early years has revealed the flexible nature of the protein folding pathways.

View Article and Find Full Text PDF

Amphiphilic derivatives of (±)-trans-1,2-diselenane-4,5-diol (DST) decorated with long alkyl chains or aromatic substituents via ester linkages were applied as glutathione peroxidase (GPx)-like catalysts. The reduction of HO with the diselenide catalysts was accelerated through a GPx-like catalytic cycle, in which the diselenide (Se-Se) bond was reduced to the diselenolate form ([Se,Se]) by coexisting dithiothreitol, and the generated highly active [Se,Se] subsequently reduced HO to HO retrieving the original Se-Se form. In the lipid peroxidation of lecithin/cholesterol liposomes induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), on the other hand, the Se-Se form directly reduced lipid peroxide (LOOH) to the corresponding alcohol (LOH), inhibiting the radical chain reaction, to exert the antioxidative effect.

View Article and Find Full Text PDF

The connectivity of mitochondria is regulated by a balance between fusion and division. Many human diseases are associated with excessive mitochondrial connectivity due to impaired Drp1, a dynamin-related GTPase that mediates division. Here, we report a mitochondrial stress response, named mitochondrial safeguard, that adjusts the balance of fusion and division in response to increased mitochondrial connectivity.

View Article and Find Full Text PDF

Mitochondria are highly dynamic organelles that continuously grow, divide, and fuse. The division of mitochondria is crucial for human health. During mitochondrial division, the mechano-guanosine triphosphatase (GTPase) dynamin-related protein (Drp1) severs mitochondria at endoplasmic reticulum (ER)-mitochondria contact sites, where peripheral ER tubules interact with mitochondria.

View Article and Find Full Text PDF

Relaxin (RLX)-2, produced by the corpus luteum and placenta, is known to be potentially effective in fibrotic diseases of the heart, lungs, kidneys, and bladder; however, its effectiveness in endometriosis has not yet been investigated. In the present study, we conducted a comprehensive study on the effect of RLX-2 on endometriosis. We checked the expressions of LGR-7, a primary receptor of RLX-2, in endometriomas using immunohistochemistry.

View Article and Find Full Text PDF

Glycolipid metabolism occurs in the Golgi apparatus, but the detailed mechanisms have not yet been elucidated. We used fluorescently labeled glycolipids to analyze glycolipid composition and localization changes and shed light on glycolipid metabolism. In a previous study, the fatty chain of lactosyl ceramide was fluorescently labeled with BODIPY (LacCer-BODIPY) before being introduced into cultured cells to analyze the cell membrane glycolipid recycling process.

View Article and Find Full Text PDF

Protein disulfide isomerase (PDI) can assist immature proteins to correctly fold by controlling cysteinyl disulfide (SS)-relating reactions (i. e., SS-formation, SS-cleavage, and SS-isomerization).

View Article and Find Full Text PDF

Glycosphingolipids (GSLs) are a group of molecules composed of a hydrophilic glycan part and a hydrophobic ceramide creating a diverse family. GSLs are de novo synthesised from ceramides at the endoplasmic reticulum and Golgi apparatus, and transported to the outer surface of the plasma membrane. It has been known that the glycan structures of GSLs change reflecting disease states.

View Article and Find Full Text PDF

A dirhodium-catalyzed, β-selective C-H amination of organosilicon compounds has been developed. Primary C(sp)-H bonds of silylethyl groups and secondary C(sp)-H bonds of silacycloalkanes can be selectively converted to C-N bonds at the β-position of the silicon atoms. The experimental data and theoretical calculations indicate that the strong σ-donor ability of the carbon-silicon bonds is responsible for the β-selectivity.

View Article and Find Full Text PDF

The tumor microenvironment (TME) formation involving host cells and cancer cells through cell adhesion molecules (CAMs) is essential for the multiple steps of cancer metastasis and growth. Sphingomyelin synthase 2 (SMS2) is involved in inflammatory diseases such as obesity and diabetes mellitus by regulation of the SM/ceramide balance. However, the involvement of SMS2 in TME formation and metastasis is largely unknown.

View Article and Find Full Text PDF

The mitochondrion is an essential organelle for a wide range of cellular processes, including energy production, metabolism, signal transduction and cell death. To execute these functions, mitochondria regulate their size, number, morphology and distribution in cells via mitochondrial division and fusion. In addition, mitochondrial division and fusion control the autophagic degradation of dysfunctional mitochondria to maintain a healthy population.

View Article and Find Full Text PDF

At the redox-active center of thioredoxin reductase (TrxR), a selenenyl sulfide (Se-S) bond is formed between Cys497 and Sec498, which is activated into the thiolselenolate state ([SH,Se ]) by reacting with a nearby dithiol motif ([SH ,SH ]) present in the other subunit. This process is achieved through two reversible steps: an attack of a cysteinyl thiol of Cys59 at the Se atom of the Se-S bond and a subsequent attack of a remaining thiol at the S atom of the generated mixed Se-S intermediate. However, it is not clear how the kinetically unfavorable second step progresses smoothly in the catalytic cycle.

View Article and Find Full Text PDF

trans-3,4-Dihydroxyselenolane oxide (DHS), a water-soluble cyclic selenoxide reagent, is useful for rapid and quantitative formation of disulphide (SS) bonds in a reduced state of SS-containing proteins because the selenoxide is a strong but selective oxidant for thiol substrates (RSH) in a wide range of pH. Due to this advantage over common disulphide reagents, such as oxidized dithiothreitol (DTT) and glutathione (GSSG), DHS enables clear characterization of oxidative folding pathways of proteins. DHS is also useful for facile diagnosis of weakly folded structure, or reactivity (i.

View Article and Find Full Text PDF

Coupling of thiol and urea-type -NHC([double bond, length as m-dash]X)NH2 (X = O or NH) groups is effective in promoting oxidative protein folding. In particular, a thiol compound coupled with a guanidyl (X = NH) group significantly accelerates the rates of folding processes and enhances the yields of native proteins.

View Article and Find Full Text PDF