Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research.
View Article and Find Full Text PDFMotivation: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking.
Results: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects.
Within clinical, biomedical, and translational science, an increasing number of projects are adopting graphs for knowledge representation. Graph-based data models elucidate the interconnectedness among core biomedical concepts, enable data structures to be easily updated, and support intuitive queries, visualizations, and inference algorithms. However, knowledge discovery across these "knowledge graphs" (KGs) has remained difficult.
View Article and Find Full Text PDFDespite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction).
View Article and Find Full Text PDFPurpose: Genomic test results, regardless of laboratory variant classification, require clinical practitioners to judge the applicability of a variant for medical decisions. Teaching and standardizing clinical interpretation of genomic variation calls for a methodology or tool.
Methods: To generate such a tool, we distilled the Clinical Genome Resource framework of causality and the American College of Medical Genetics/Association of Molecular Pathology and Quest Diagnostic Laboratory scoring of variant deleteriousness into the Clinical Variant Analysis Tool (CVAT).
Background: 16p13.11 microduplication syndrome has a variable presentation and is characterized primarily by neurodevelopmental and physical phenotypes resulting from copy number variation at chromosome 16p13.11.
View Article and Find Full Text PDFIntegrated, up-to-date data about SARS-CoV-2 and COVID-19 is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time-consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community vary drastically for different tasks; the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians.
View Article and Find Full Text PDFWhile abnormalities related to carbohydrates (glycans) are frequent for patients with rare and undiagnosed diseases as well as in many common diseases, these glycan-related phenotypes (glycophenotypes) are not well represented in knowledge bases (KBs). If glycan-related diseases were more robustly represented and curated with glycophenotypes, these could be used for molecular phenotyping to help to realize the goals of precision medicine. Diagnosis of rare diseases by computational cross-species comparison of genotype-phenotype data has been facilitated by leveraging ontological representations of clinical phenotypes, using Human Phenotype Ontology (HPO), and model organism ontologies such as Mammalian Phenotype Ontology (MP) in the context of the Monarch Initiative.
View Article and Find Full Text PDFIn biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven't been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search.
View Article and Find Full Text PDFThe correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms.
View Article and Find Full Text PDFThe principles of genetics apply across the entire tree of life. At the cellular level we share biological mechanisms with species from which we diverged millions, even billions of years ago. We can exploit this common ancestry to learn about health and disease, by analyzing DNA and protein sequences, but also through the observable outcomes of genetic differences, i.
View Article and Find Full Text PDFThe Matchmaker Exchange application programming interface (API) allows searching a patient's genotypic or phenotypic profiles across clinical sites, for the purposes of cohort discovery and variant disease causal validation. This API can be used not only to search for matching patients, but also to match against public disease and model organism data. This public disease data enable matching known diseases and variant-phenotype associations using phenotype semantic similarity algorithms developed by the Monarch Initiative.
View Article and Find Full Text PDFHelicobacter pylori, inhabitant of the gastric mucosa of over half of the world population, with decreasing prevalence in the U.S., has been associated with a variety of gastric pathologies.
View Article and Find Full Text PDFEnterobacter radicincitans sp. nov. DSM16656(T) represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species.
View Article and Find Full Text PDFMycobacterium massiliense (Mycobacterium abscessus group) is an emerging pathogen causing pulmonary disease and skin and soft tissue infections. We report the genome sequence of the type strain CCUG 48898.
View Article and Find Full Text PDF