ConspectusEnzymes are highly efficient and selective catalysts that operate under mild conditions, making them invaluable for various chemical transformations. However, their limitations, such as instability and high cost, call for advancements in enzyme immobilization and the development of suitable host materials. Metal-organic frameworks (MOFs), characterized by high porosity, crystallinity, and tunability, are promising candidates for enzyme encapsulation.
View Article and Find Full Text PDFThe discovery of metal-organic frameworks (MOFs) with novel structures provides significant opportunities for developing porous solids with new properties and enriching the structural diversity of functional materials for various applications. The rational design of building units with specific geometric conformations is essential to direct the construction of MOFs with unique properties. Herein, we leverage a ligand desymmetrization approach to construct a series of new MOFs.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have shown promise in both capturing CO under flue gas conditions and converting it into valuable chemicals. However, the development of a single MOF capable of capturing and selectively converting CO has remained elusive due to a lack of a harmonious combination of selectivity, water stability, and reactivity. For example, Cu(I)-based MOFs are particularly effective for CO conversion, but they do not typically exhibit selective CO adsorption and often suffer from instability in the presence of air and moisture.
View Article and Find Full Text PDFHere, an ionic polymer of intrinsic microporosity (PIM) as a high-functioning supercapacitor electrode without the need for conductive additives or binders is reported. The performance of this material is directly related to its large accessible surface area. By comparing electrochemical performance between a porous viologen PIM and a nonporous viologen polymer, it is revealed that the high energy and power density are both due to the ability of ions to rapidly access the ionic PIM.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2024
Investigating the structure-property correlation in porous materials is a fundamental and consistent focus in various scientific domains, especially within sorption research. Metal oxide clusters with capping ligands, characterized by intrinsic cavities formed through specific solid-state packing, demonstrate significant potential as versatile platforms for sorption investigations due to their precisely tunable atomic structures and inherent long-range order. This study presents a series of TiCe-oxo clusters with subtle variations in coordinated linkers and explores their sorption behavior.
View Article and Find Full Text PDFAlthough technologically promising, the reduction of carbon dioxide (CO) to produce carbon monoxide (CO) remains economically challenging owing to the lack of an inexpensive, active, highly selective, and stable catalyst. We show that nanocrystalline cubic molybdenum carbide (α-MoC), prepared through a facile and scalable route, offers 100% selectivity for CO reduction to CO while maintaining its initial equilibrium conversion at high space velocity after more than 500 hours of exposure to harsh reaction conditions at 600°C. The combination of operando and postreaction characterization of the catalyst revealed that its high activity, selectivity, and stability are attributable to crystallographic phase purity, weak CO-MoC interactions, and interstitial oxygen atoms, respectively.
View Article and Find Full Text PDFHydrolytically stable materials exhibiting a wide range of programmable water sorption behaviors are crucial for on-demand water sorption systems. While notable advancements in employing metal-organic frameworks (MOFs) as promising water adsorbents have been made, developing a robust yet easily tailorable MOF scaffold for specific operational conditions remains a challenge. To address this demand, we employed a topology-guided linker installation strategy using NU-600, which is a zirconium-based MOF (Zr-MOF) that contains three vacant crystallographically defined coordination sites.
View Article and Find Full Text PDFCALF-20, a Zn-triazolate-based metal-organic framework (MOF), is one of the most promising adsorbent materials for CO capture. However, competitive adsorption of water severely limits its performance when the relative humidity (RH) exceeds 40%, limiting the potential implementation of CALF-20 in practical settings where CO is saturated with moisture, such as postcombustion flue gas. In this work, three newly designed MOFs related to CALF-20, denoted as NU-220, CALF-20M-w, and CALF-20M-e that feature hydrophobic methyltriazolate linkers, are presented.
View Article and Find Full Text PDFControl of humidity within confined spaces is critical for maintaining air quality and human well-being, with implications for environments ranging from international space stations and pharmacies to granaries and cultural relic preservation sites. However, existing techniques rely on energy-intensive electrically driven equipment or complex temperature and humidity control (THC) systems, resulting in imprecision and inconvenience. The development of innovative techniques and materials capable of simultaneously meeting the stringent requirements of practical applications holds the key to creating intelligent and energy-efficient humidity control devices.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) that contain open metal sites have the potential for storing hydrogen (H) at ambient temperatures. In particular, Cu(I)-based MOFs demonstrate very high isosteric heats of adsorption for hydrogen relative to other reported MOFs with open metal sites. However, most of these Cu(I)-based MOFs are not stable in ambient conditions since the Cu(I) species display sensitivity toward moisture and can rapidly oxidize in air.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) with Lewis acid catalytic sites, such as zirconium-based MOFs (Zr-MOFs), comprise a growing class of phosphatase-like nanozymes that can degrade toxic organophosphate pesticides and nerve agents. Rationally engineering and shaping MOFs from as-synthesized powders into hierarchically porous monoliths is essential for their use in emerging applications, such as filters for air and water purification and personal protection gear. However, several challenges still limit the production of practical MOF composites, including the need for sophisticated reaction conditions, low MOF catalyst loadings in the resulting composites, and poor accessibility to MOF-based active sites.
View Article and Find Full Text PDFPolymer/metal-organic framework (MOF) composites have been widely studied for their favorable combination of polymer flexibility and MOF crystallinity. While traditional polymer-coated MOFs maximize the polymer properties at the surface, the dramatic loss of MOF porosity due to blockage by the nonporous polymeric coating remains a problem. Herein, we introduce intrinsically microporous synthetic allomelanin (AM) as a porous coating on the zirconium-based MOF (Zr-MOF) UiO-66 via an in situ surface-constrained oxidative polymerization of the AM precursor, 1,8-dihydroxynaphthalene (1,8-DHN).
View Article and Find Full Text PDFFunctional porous metal-organic frameworks (MOFs) have been explored for a number of potential applications in catalysis, chemical sensing, water capture, gas storage, and separation. MOFs are among the most promising candidates to address challenges facing our society related to energy and environment, but the successful implementation of functional porous MOF materials are contingent on their stability; therefore, the rational design of stable MOFs plays an important role towards the development of functional porous MOFs. In this Focus article, we summarize progress in the rational design and synthesis of stable MOFs with controllable pores and functionalities.
View Article and Find Full Text PDFThe interactions between uranium and non-innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium-based metal-organic frameworks (MOFs) offer a new angle to study these interactions, as these self-assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non-innocent linkers.
View Article and Find Full Text PDFOver the past 25 years, metal-organic frameworks (MOFs) have developed into an increasingly intricate class of crystalline porous materials in which the choice of building blocks offers significant control over the physical properties of the resulting material. Despite this complexity, fundamental coordination chemistry design principles provided a strategic basis to design highly stable MOF structures. In this Perspective, we provide an overview of these design strategies and discuss how researchers leverage fundamental chemistry concepts to tune reaction parameters and synthesize highly crystalline MOFs.
View Article and Find Full Text PDFOrganophosphorus nerve agents are among the most toxic chemicals known and remain threats to humans due to their continued use despite international bans. Metal-organic frameworks (MOFs) have emerged as a class of heterogeneous catalysts with tunable structures that are capable of rapidly detoxifying these chemicals via hydrolysis at Lewis acidic active sites on the metal nodes. To date, the majority of studies in this field have focused on zirconium-based MOFs (Zr-MOFs) that contain hexanuclear Zr(IV) clusters, despite the large toolbox of Lewis acidic transition metal ions that are available to construct MOFs with similar catalytic properties.
View Article and Find Full Text PDFEfficient separation of xenon (Xe) and krypton (Kr) mixtures through vacuum swing adsorption (VSA) is considered the most attractive route to reduce energy consumption, but discriminating between these two gases is difficult due to their similar properties. In this work, we report a cubic zirconium-based MOF (Zr-MOF) platform, denoted as NU-1107, capable of achieving selective separation of Xe/Kr by post-synthetically engineering framework polarizability in a programmable manner. Specifically, the tetratopic linkers in NU-1107 feature tetradentate cyclen cores that are capable of chelating a variety of transition-metal ions, affording a sequence of metal-docked cationic isostructural Zr-MOFs.
View Article and Find Full Text PDFSince the structure of supramolecular isomers determines their performance, rational synthesis of a specific isomer hinges on understanding the energetic relationships between isomeric possibilities. To this end, we have systematically interrogated a pair of uranium-based metal-organic framework topological isomers both synthetically and through density functional theory (DFT) energetic calculations. Although synthetic and energetic data initially appeared to mismatch, we assigned this phenomenon to the appearance of a metastable isomer, driven by levers defined by Le Châtelier's principle.
View Article and Find Full Text PDFHierarchically ordered porous materials with tailored and inter-connected macro-, meso-, and micro-pores would facilitate the heterogeneous adsorption and catalysis processes for a wide range of applications but remain a challenge for synthetic chemists. Here, a general and efficient strategy for the synthesis of inverse opal metal-organic frameworks (IO MOFs) with a tunable size of macro-, meso-, and micro-pores is reported. The strategy is based on the step-wise template formation, precursor infiltration, solvo-thermal reaction, and chemical etching.
View Article and Find Full Text PDFProteins immobilized in metal-organic frameworks (MOFs) often show extraordinary stability. However, most efforts to immobilize proteins in MOFs have only been exploratory. Herein, we present the first systematic study on the thermodynamics of protein immobilization in MOFs.
View Article and Find Full Text PDFThe rapid, discriminative, and portable detection of highly toxic chemical warfare agents is extremely important for response to public security emergencies but remains a challenge. One plausible solution involves the integration of porous molecular traps onto a photoelectrochemical (PEC) sensor. Here, a fast and facile protocol is developed to fabricate sub-1 nm AgNPs encapsulated hydrogen-bonded organic framework (HOF) nanocomposite materials through an in situ photoreduction and subsequent encapsulation process.
View Article and Find Full Text PDFThe world is currently suffering socially, economically, and politically from the recent pandemic outbreak due to the coronavirus disease 2019 (COVID-19), and those in hospitals, schools, and elderly nursing homes face enhanced threats. Healthcare textiles, such as masks and medical staff gowns, are susceptible to contamination of various pathogenic microorganisms, including bacteria and viruses. Metal-organic frameworks (MOFs) can potentially address these challenges due to their tunable reactivity and ability to be incorporated as porous coatings on textile materials.
View Article and Find Full Text PDF