Publications by authors named "Kent Lemaster"

Screening for poor physical performance has the potential to identify older adults at risk for loss of future independence, yet clinically feasible measures have yet to be identified. Using data from the National Health and Aging Trends Study, we evaluated the diagnostic utility of self-reported physical capacities of older adults (walking three blocks or six blocks, climbing 10 stairs or 20 stairs) compared to the objectively measured Short Physical Performance Battery (SPPB). Sensitivity, specificity, and likelihood ratio (LR) were calculated across three SPPB cut-points (≤8, ≤9, ≤10).

View Article and Find Full Text PDF

Unlabelled: The aim of the study was to determine the effects of exercise training on improving the thoracic perivascular adipose tissue (tPVAT) phenotype (inflammation, oxidative stress, and proteasome function) in metabolic syndrome and its subsequent actions on aortic function.

Methods: Lean and obese (model of metabolic syndrome) Zucker rats (n=8/group) underwent 8-weeks of control conditions or treadmill exercise (70% of max speed, 1 h/day, 5 days/week). At the end of the intervention, the tPVAT was removed and conditioned media was made.

View Article and Find Full Text PDF

Prediabetes is associated with impaired contraction-evoked dilation of skeletal muscle arterioles, which may be due to increased sympathetic activity accompanying this early stage of diabetes disease. Herein, we sought to determine whether blunted contraction-evoked vasodilation resulted from enhanced sympathetic neuropeptide Y1 receptor (Y1R) and alpha-1 adrenergic receptor (α1R) activation. Using intravital video microscopy, second-, third-, and fourth-order (2A, 3A, and 4A) arteriolar diameters were measured before and following electrical field stimulation of the gluteus maximus muscle (GM) in prediabetic (PD, Pound Mouse) and control (CTRL, c57bl6, CTRL) mice.

View Article and Find Full Text PDF

It has long been known that chronic metabolic disease is associated with a parallel increase in the risk for developing peripheral vascular disease. Although more clinically relevant, our understanding about reversing established vasculopathy is limited compared with our understanding of the mechanisms and development of impaired vascular structure/function under these conditions. Using the 13-wk-old obese Zucker rat (OZR) model of metabolic syndrome, where microvascular dysfunction is sufficiently established to contribute to impaired skeletal muscle function, we imposed a 7-wk intervention of chronic atorvastatin treatment, chronic treadmill exercise, or both.

View Article and Find Full Text PDF

Background: Although the increased prevalence and severity of clinical depression and elevated cardiovascular disease risk represent 2 vexing public health issues, the growing awareness of their combined presentation compounds the challenge. The obese Zucker rat, a model of the metabolic syndrome, spontaneously develops significant depressive symptoms in parallel with the progression of the metabolic syndrome and, thus, represents a compelling model for study. The primary objective was to assess the impact on both cardiovascular outcomes, specifically vascular structure and function, and depressive symptoms in obese Zucker rats after aggressive treatment for cardiovascular disease risk factors with long-term exercise or targeted pharmacological interventions.

View Article and Find Full Text PDF

The increasing prevalence and severity of clinical depression are strongly correlated with vascular disease risk, creating a comorbid condition with poor outcomes but demonstrating a sexual disparity whereby female subjects are at lower risk than male subjects for subsequent cardiovascular events. To determine the potential mechanisms responsible for this protection against stress/depression-induced vasculopathy in female subjects, we exposed male, intact female, and ovariectomized (OVX) female lean Zucker rats to the unpredictable chronic mild stress (UCMS) model for 8 wk and determined depressive symptom severity, vascular reactivity in ex vivo aortic rings and middle cerebral arteries (MCA), and the profile of major metabolites regulating vascular tone. While all groups exhibited severe depressive behaviors from UCMS, severity was significantly greater in female rats than male or OVX female rats.

View Article and Find Full Text PDF

While it is known that chronic stress and clinical depression are powerful predictors of poor cardiovascular outcomes, recent clinical evidence has identified correlations between the development of metabolic disease and depressive symptoms, creating a combined condition of severely elevated cardiovascular disease risk. In this study, we used the obese Zucker rat (OZRs) and the unpredictable chronic mild stress (UCMS) model to determine the impact of preexisting metabolic disease on the relationship between chronic stress/depressive symptoms and vascular function. Additionally, we determined the impact of metabolic syndrome on sex-based protection from chronic stress/depressive effects on vascular function in female lean Zucker rats (LZRs).

View Article and Find Full Text PDF

New Findings: What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure.

Abstract: Chronic unresolvable stress leads to the development of depression and cardiovascular disease.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Tumour necrosis factor-α (TNFα) has been shown to impair vascular function, but the impact of thoracic aorta perivascular adipose tissue (tPVAT)-derived TNFα on tPVAT and aortic function in metabolic syndrome is unknown. What is the main finding and its importance? Release of TNFα by tPVAT causes production of reactive oxygen species in tPVAT through activation of an NADPH-oxidase 2 (NOX2)-dependent pathway, activates production of aortic reactive oxygen species and mediates aortic stiffness, potentially through matrix metalloproteinase 9 activity. Neutralization of TNFα and/or inhibition of NOX2 blocks the tPVAT-induced impairment of aortic function.

View Article and Find Full Text PDF

Purpose: The present study examined the effect of unpredictable chronic mild stress (UCMS) on peripheral microvessel function in healthy and metabolic syndrome (MetS) rodents and whether exercise training could prevent the vascular dysfunction associated with UCMS.

Methods: Lean and obese (model of MetS) Zucker rats (LZR and OZR) were exposed to 8 wk of UCMS, exercise (Ex), UCMS + Ex, or control conditions. At the end of the intervention, gracilis arterioles (GA) were isolated and hung in a pressurized myobath to assess endothelium-dependent (EDD) and endothelium-independent (EID) dilation.

View Article and Find Full Text PDF

What is the central question of this study? Does a stroke event influence aortic endothelial function; and what is the role of peripheral circulating leucocytes in stroke on the vascular reactivity of the aorta? What is the main finding and its importance? In vitro co-culture experiments demonstrated that aortic endothelium-dependent relaxation was impaired when rat aortic rings were co-cultured with leucocytes stimulated with serum from stroke patients. Impaired vascular reactivity was not observed in aortic rings without leucocytes stimulated with serum from stroke patients or age-matched control patients with or without leucocytes. These data suggest that leucocyte-dependent altered aortic endothelium-dependent relaxation with stroke and the systemic consequences of stroke on vascular inflammation may occur in the aorta.

View Article and Find Full Text PDF

Key Points: With the development of the metabolic syndrome, both post-capillary and collecting venular dilator reactivity within the skeletal muscle of obese Zucker rats (OZR) is impaired. The impaired dilator reactivity in OZR reflects a loss in venular nitric oxide and PGI bioavailability, associated with the chronic elevation in oxidant stress. Additionally, with the impaired dilator responses, a modest increase in adrenergic constriction combined with an elevated thromboxane A production may contribute to impaired functional dilator and hyperaemic responses at the venular level.

View Article and Find Full Text PDF

This review summarizes material presented in "Adaptive Outcomes of Microvascular Networks to Obesity and Type II Diabetes/Insulin Resistance" on July 30, 2016, at the Joint Meeting of the American Physiological Society and the Physiological Society, in Dublin, Ireland. We discuss the poor predictive power of traditional markers of vascular dysfunction for functional outcomes of muscle fatigue-resistance and active hyperemia within the setting of elevated peripheral vascular disease risk. Using the obese Zucker rat model of the metabolic syndrome, we describe how blood flow distribution at arteriolar bifurcations (γ) is altered with PVD risk reflecting increased spatial heterogeneity of distribution within networks.

View Article and Find Full Text PDF

Purpose: Although studies suggest elevated adrenergic activity paralleling metabolic syndrome in OZRs, the moderate hypertension and modest impact on organ perfusion question the multi-scale validity of these data.

Methods: To understand how adrenergic function contributes to vascular reactivity in OZR, we utilized a multi-scale approach to investigate pressure responses, skeletal muscle blood flow, and vascular reactivity following adrenergic challenge.

Results: For OZR, adrenergic challenge resulted in increased pressor responses vs LZRs, mediated via α receptors, with minimal contribution by either ROS or NO bioavailability.

View Article and Find Full Text PDF