Publications by authors named "Kent D Irwin"

We describe the newest generation of the SLAC Microresonator RF (SMuRF) electronics, a warm digital control and readout system for microwave-frequency resonator-based cryogenic detector and multiplexer systems, such as microwave superconducting quantum interference device multiplexers (μmux) or microwave kinetic inductance detectors. Ultra-sensitive measurements in particle physics and astronomy increasingly rely on large arrays of cryogenic sensors, which in turn necessitate highly multiplexed readout and accompanying room-temperature electronics. Microwave-frequency resonators are a popular tool for cryogenic multiplexing, with the potential to multiplex thousands of detector channels on one readout line.

View Article and Find Full Text PDF

Lithium-rich nickel-manganese-cobalt (LirNMC) layered material is a promising cathode for lithium-ion batteries thanks to its large energy density enabled by coexisting cation and anion redox activities. It however suffers from a voltage decay upon cycling, urging for an in-depth understanding of the particle-level structure and chemical complexity. In this work, we investigate the LiNiMnCoO particles morphologically, compositionally, and chemically in three-dimensions.

View Article and Find Full Text PDF

We present results obtained with a new soft X-ray spectrometer based on transition-edge sensors (TESs) composed of Mo/Cu bilayers coupled to bismuth absorbers. This spectrometer simultaneously provides excellent energy resolution, high detection efficiency, and broadband spectral coverage. The new spectrometer is optimized for incident X-ray energies below 2 keV.

View Article and Find Full Text PDF

Terminal copper-nitrenoid complexes have inspired interest in their fundamental bonding structures as well as their putative intermediacy in catalytic nitrene-transfer reactions. Here, we report that aryl azides react with a copper(I) dinitrogen complex bearing a sterically encumbered dipyrrin ligand to produce terminal copper nitrene complexes with near-linear, short copper-nitrenoid bonds [1.745(2) to 1.

View Article and Find Full Text PDF

Li- and Mn-rich (LMR) layered cathode materials have demonstrated impressive capacity and specific energy density thanks to their intertwined redox centers including transition metal cations and oxygen anions. Although tremendous efforts have been devoted to the investigation of the electrochemically driven redox evolution in LMR cathode at ambient temperature, their behavior under a mildly elevated temperature (up to ∼100 °C), with or without electrochemical driving force, remains largely unexplored. Here we show a systematic study of the thermally driven surface-to-bulk redox coupling effect in charged LiNiCoMnO.

View Article and Find Full Text PDF

Lynx is an x-ray telescope, one of four large satellite mission concepts currently being studied by NASA to be a flagship mission. One of Lynx's three instruments is an imaging spectrometer called the Lynx x-ray microcalorimeter (LXM), an x-ray microcalorimeter behind an x-ray optic with an angular resolution of 0.5 arc sec and ∼2 m of area at 1 keV.

View Article and Find Full Text PDF

We are designing an array of transition-edge sensor (TES) microcalorimeters for a soft X-ray spectrometer at the Linac Coherent Light Source at SLAC National Accelerator Laboratory to coincide with upgrades to the free electron laser facility. The complete spectrometer will have 1000 TES pixels with energy resolution of 0.5 eV full-width at half-maximum (FWHM) for incident energies below 1 keV while maintaining pulse decay-time constants shorter than 100 s.

View Article and Find Full Text PDF

We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples.

View Article and Find Full Text PDF

Purpose: Prototype phantoms were designed, constructed, and characterized for the purpose of calibrating ultralow field magnetic resonance imaging (ULF MRI) systems. The phantoms were designed to measure spatial resolution and to quantify sensitivity to systematic variation of proton density and relaxation time, T1 .

Methods: The phantoms were characterized first with conventional magnetic resonance scanners at 1.

View Article and Find Full Text PDF

Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time present strong evidence for motions of galaxy clusters and groups via microwave background temperature distortions due to the kinematic Sunyaev-Zel'dovich effect. Galaxy clusters are identified by their constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. We measure the mean pairwise momentum of clusters, with a probability of the signal being due to random errors of 0.

View Article and Find Full Text PDF

For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe.

View Article and Find Full Text PDF

We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.

View Article and Find Full Text PDF

SCUBA-2 is a submillimeter camera being built for the James Clerk Maxwell Telescope in Hawaii. Bringing CCD style imaging to the submillimeter for the first time, with over 10000 pixels, it will provide a revolutionary improvement in sensitivity and mapping speed. We present results of the first tests on a prototype 1280 pixel SCUBA-2 subarray; the full instrument will be made up of eight such subarrays.

View Article and Find Full Text PDF