Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research.
View Article and Find Full Text PDFMotivation: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking.
Results: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects.
Within clinical, biomedical, and translational science, an increasing number of projects are adopting graphs for knowledge representation. Graph-based data models elucidate the interconnectedness among core biomedical concepts, enable data structures to be easily updated, and support intuitive queries, visualizations, and inference algorithms. However, knowledge discovery across these "knowledge graphs" (KGs) has remained difficult.
View Article and Find Full Text PDFBackground: 16p13.11 microduplication syndrome has a variable presentation and is characterized primarily by neurodevelopmental and physical phenotypes resulting from copy number variation at chromosome 16p13.11.
View Article and Find Full Text PDFIntegrated, up-to-date data about SARS-CoV-2 and COVID-19 is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time-consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community vary drastically for different tasks; the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians.
View Article and Find Full Text PDFIn biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven't been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search.
View Article and Find Full Text PDF