Objective: To develop a magnetic field measurement method in the carpal tunnel area in response to electrical median nerve stimulation at the elbow and evaluate its usefulness.
Methods: Five healthy subjects participated. The magnetic field recording evoked by median nerve electrical stimulation at the elbow with electrical intensity that minimized the pronator quadratus and flexor carpi radialis muscle response was measured with 132-channel superconducting quantum interference device magnetoneurography.
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown.
View Article and Find Full Text PDFObjective: To measure neuromagnetic fields of ulnar neuropathy patients at the elbow after electrical stimulation and evaluate ulnar nerve function at the elbow with high spatial resolution.
Methods: A superconducting quantum interference device magnetometer system recorded neuromagnetic fields of the ulnar nerve at the elbow after electrical stimulation at the wrist in 16 limbs of 16 healthy volunteers and 21 limbs of 20 patients with ulnar neuropathy at the elbow. After artifact removal, neuromagnetic field signals were processed into current distributions, which were superimposed onto X-ray images for visualization.
Alzheimer's disease (AD) is characterized by the accumulation of amyloid- and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown.
View Article and Find Full Text PDFReconstructing complex brain source activity at a high spatiotemporal resolution from magnetoencephalography (MEG) or electroencephalography (EEG) remains a challenging problem. Adaptive beamformers are routinely deployed for this imaging domain using the sample data covariance. However adaptive beamformers have long been hindered by 1) high degree of correlation between multiple brain sources, and 2) interference and noise embedded in sensor measurements.
View Article and Find Full Text PDFSimultaneously estimating brain source activity and noise has long been a challenging task in electromagnetic brain imaging using magneto- and electroencephalography. The problem is challenging not only in terms of solving the NP-hard inverse problem of reconstructing unknown brain activity across thousands of voxels from a limited number of sensors, but also for the need to simultaneously estimate the noise and interference. We present a generative model with an augmented leadfield matrix to simultaneously estimate brain source activity and sensor noise statistics in electromagnetic brain imaging (EBI).
View Article and Find Full Text PDFAccurate reconstruction of the spatio-temporal dynamics of event-related cortical oscillations across human brain regions is an important problem in functional brain imaging and human cognitive neuroscience with magnetoencephalography (MEG) and electroencephalography (EEG). The problem is challenging not only in terms of localization of complex source configurations from sensor measurements with unknown noise and interference but also for reconstruction of transient event-related time-frequency dynamics of cortical oscillations. We recently proposed a robust empirical Bayesian algorithm for simultaneous reconstruction of complex brain source activity and noise covariance, in the context of evoked and resting-state data.
View Article and Find Full Text PDFObjective: To measure the neuromagnetic fields of carpal tunnel syndrome patients after electrical digital nerve stimulation and evaluate median nerve function with high spatial resolution.
Methods: A superconducting quantum interference device magnetometer system was used to record neuromagnetic fields at the carpal tunnel after electrical stimulation of the middle digital nerve in 10 hands of nine patients with carpal tunnel syndrome. The patients were diagnosed based on symptoms (numbness, tingling, and pain) supported by a positive Phalen or Tinel sign.
Objective: To visualize the neural activity of the ulnar nerve at the elbow using magnetoneurography (MNG).
Methods: Subjects were asymptomatic volunteers (eight men and one woman; age, 26-53 years) and a male patient with cubital tunnel syndrome (age, 54 years). The ulnar nerve was electrically stimulated at the left wrist and evoked magnetic fields were recorded by a 132-channel biomagnetometer system with a superconducting quantum interference device at the elbow.
Objective: Noninvasive and detailed visualization of electrophysiological activity in the thoracic spinal cord through magnetoneurography.
Methods: In five healthy volunteers, magnetic fields around current flowing in the thoracic spinal cord after alternating unilateral and synchronized bilateral sciatic nerve stimulation were measured using a magnetoneurograph system with superconductive quantum interference device biomagnetometers. The current distribution was obtained from the magnetic data by spatial filtering and visualized by superimposing it on the X-ray image.
Magnetoencephalography (MEG) is increasingly used for presurgical planning in people with medically refractory focal epilepsy. Localization of interictal epileptiform activity, a surrogate for the seizure onset zone whose removal may prevent seizures, is challenging and depends on the use of multiple complementary techniques. Accurate and reliable localization of epileptiform activity from spontaneous MEG data has been an elusive goal.
View Article and Find Full Text PDFObjective: To obtain magnetic recordings of electrical activities in the cervical cord and visualize sensory action currents of the dorsal column, intervertebral foramen, and dorsal horn.
Methods: Neuromagnetic fields were measured at the neck surface upon median nerve stimulation at the wrist using a magnetospinography system with high-sensitivity superconducting quantum interference device sensors. Somatosensory evoked potentials (SEPs) were also recorded.
Robust estimation of the number, location, and activity of multiple correlated brain sources has long been a challenging task in electromagnetic brain imaging from M/EEG data, one that is significantly impacted by interference from spontaneous brain activity, sensor noise, and other sources of artifacts. Recently, we introduced the Champagne algorithm, a novel Bayesian inference algorithm that has shown tremendous success in M/EEG source reconstruction. Inherent to Champagne and most other related Bayesian reconstruction algorithms is the assumption that the noise covariance in sensor data can be estimated from "baseline" or "control" measurements.
View Article and Find Full Text PDFNeurodynamic Utility Toolbox for Magnetoencephalo- and Electroencephalography (NUTMEG) is an open-source MATLAB-based toolbox for the analysis and reconstruction of magnetoencephalography/electroencephalography data in source space. NUTMEG includes a variety of options for the user in data import, preprocessing, source reconstruction, and functional connectivity. A group analysis toolbox allows the user to run a variety of inferential statistics on their data in an easy-to-use GUI-driven format.
View Article and Find Full Text PDFObjective: Magnetospinography (MSG) has been developed for clinical application and is expected to be a novel neurophysiological examination. Here, we used an MSG system with sensors positioned in three orthogonal directions to record lumbar canal evoked magnetic fields (LCEFs) in response to peripheral nerve stimulation and to evaluate methods for localizing spinal cord lesions.
Methods: LCEFs from the lumbar area of seven rabbits were recorded by the MSG system in response to electrical stimulation of a sciatic nerve.
Annu Int Conf IEEE Eng Med Biol Soc
July 2019
In this paper, we present a novel scanning algorithm, called Covariance Optimization Garnering Noise for Active Cancellation (COGNAC), for magnetoencephalography (MEG) and electroencephalography (EEG) source localization. COGNAC uses a probabilistic graphical generative model for describing sensor data. This novel generative model partitions contributions to sensor data from sources at a particular scan location and from sources outside the scan location, with corresponding multi-resolution variance parameters that are estimated from data.
View Article and Find Full Text PDFObjective: To establish a noninvasive method to measure the neuromagnetic fields of the median nerve at the carpal tunnel after electrical digital nerve stimulation and evaluate peripheral nerve function.
Methods: Using a vector-type biomagnetometer system with a superconducting quantum interference device, neuromagnetic fields at the carpal tunnel were recorded after electrical stimulation of the index or middle digital nerve in five healthy volunteers. A novel technique for removing stimulus-induced artifacts was applied, and current distributions were calculated using a spatial filter algorithm and superimposed on X-ray.
Objectives: This study aimed to develop a novel premature ventricular contraction (PVC) mapping method to predict PVC origins in whole ventricles by merging a magnetocardiography (MCG) image with a cardiac computed tomography (CT) image.
Background: MCG can noninvasively discriminate PVCs originating from the aortic sinus cusp from those originating from the right ventricular outflow tract.
Methods: This study was composed of 22 candidates referred for catheter ablation of idiopathic PVCs.
Objective: To visualize neural activity in the brachial plexus using magnetoneurography (MNG).
Methods: Using a 124- or 132-channel biomagnetometer system with a superconducting quantum interference device, neuromagnetic fields above the clavicle and neck region were recorded in response to electrical stimulation of the median and ulnar nerves in five asymptomatic volunteers (four men and one woman; age, 27-45 years old). Equivalent currents were computationally reconstructed from neuromagnetic fields and visualized as pseudocolor maps.
Objective: Large-amplitude artifacts from vagus nerve stimulator (VNS) implants for refractory epilepsy affect magnetoencephalography (MEG) recordings and are difficult to reject, resulting in unusable data from this important population of patients who are frequently evaluated for surgical treatment of epilepsy. Here we compare the performance of two artifact removal algorithms for MEG data: dual signal subspace projection (DSSP) and temporally extended signal space separation (tSSS).
Approach: Each algorithm's performance was first evaluated in simulations.
Electromagnetic brain imaging is the reconstruction of brain activity from non-invasive recordings of the magnetic fields and electric potentials. An enduring challenge in this imaging modality is estimating the number, location, and time course of sources, especially for the reconstruction of distributed brain sources with complex spatial extent. Here, we introduce a novel robust empirical Bayesian algorithm that enables better reconstruction of distributed brain source activity with two key ideas: kernel smoothing and hyperparameter tiling.
View Article and Find Full Text PDFMagnetoencephalography (MEG) data is subject to many sources of environmental noise, and interference rejection is a necessary step in the processing of MEG data. Large amplitude interference caused by sources near the brain have been common in clinical settings and are difficult to reject. Artifact from vagal nerve stimulators (VNS) is a prototypical example.
View Article and Find Full Text PDFObjective: To establish a method to measure cauda equina action fields (CEAFs) and visualize the electrical activities of the cauda equina in a broadly aged group of healthy adults.
Methods: Using a 124-channel magnetospinography (MSG) system with superconducting interference devices, the CEAFs of 43 healthy volunteers (22-64 years of age) were measured after stimulation of the peroneal nerve at the knee. Reconstructed currents were obtained from the CEAFs and superimposed on the X-ray image.
In previous magnetocardiography studies, magnetocardiograms (MCGs) have been obtained using superconducting quantum interference device (SQUID) systems. SQUID is the most sensitive instrument for measuring low-frequency magnetic fields, but it requires liquid helium for cooling, so operating costs are high. In contrast, magnetoresistive (MR) magnetometers function by detecting the change in resistance, caused by an external magnetic field, and have much lower costs.
View Article and Find Full Text PDF