Chondrocytes in articular cartilage synthesize collagen type II and large sulfated proteoglycans, whereas the same cells cultured in monolayer (2D) dedifferentiate into fibroblastic cells and express collagen type I and small proteoglycans. On the other hand, a pellet culture system was developed as a method for preventing the phenotypic modulation of chondrocytes and promoting the redifferentiation of dedifferentiated ones. Because the pellet culture system forms only one cell aggregate each tube by a centrifugator, the pellet could not be applied to produce a tissue-engineered cartilage.
View Article and Find Full Text PDFTissue engineering approaches have been clinically tried to repair damaged articular cartilages. It is an essential step to uniformly seed chondrocytes into 3D scaffolds in order to reconstruct tissue-engineered cartilages in vitro, but the tissue engineering could not have been provided with efficient cell seeding methods. Type I collagen is clinically used and known as a cytocompatible material, having recognition sites for integrins.
View Article and Find Full Text PDFAlthough rapid formation of a smooth inner surface is important in constructing an artificial vascular graft, a conventional model that uses a biodegradable polymer such as poly-glycolic acid needs long-term culture to form it. In another model, which uses collagen gel, it is reported that prompt formation of the smooth inner surface was achieved. But the mechanical properties were not suitable, resulting in rupture under high pressure at the arterial level.
View Article and Find Full Text PDF