The quest for simple ligands that enable multi-electron metal-ligand redox chemistry is driven by a desire to replace noble metals in catalysis and to discover novel chemical reactivity. The vast majority of simple ligand systems display electrochemical potentials impractical for catalytic cycles, illustrating the importance of creating new strategies towards energetically aligned ligand frontier and transition metal d orbitals. We herein demonstrate the ability to chemically control the redox-activity of the ubiquitous acetylacetonate (acac) ligand.
View Article and Find Full Text PDFβ-Diketonates, such as acetylacetonate, are amongst the most common bidentate ligands towards elements across the entire periodic table and are considered wholly redox-inactive in their complexes. Herein we show that complexation of 1,1,1,5,5,5-hexafluoroacetylacetonate (hfac ) to Cr spontaneously affords Cr and a reduced β-diketonate radical ligand scaffold, as evidenced by crystallographic analysis, magnetic measurements, optical spectroscopy, reactivity studies, and DFT calculations. The possibility of harnessing β-diketonates as electron reservoirs opens up possibilities for new metal-ligand concerted reactivity in the ubiquitous β-diketonate coordination chemistry.
View Article and Find Full Text PDFTo further explore the reactivity and redox capability of the bis-arylimino acenaphthylene ligand (BIAN) in early transition metal complexes, the coordinatively unsaturated titanium synthons, [(dpp-BAAN)Ti(R)2] ([dpp-BAAN](2-) = N,N'-bis(2,6-diisopropylphenylamido)acenaphthylene and R = O(t)Bu (2) or CH2C(CH3)3 (3)), in which the BAAN ligand is reduced by two electrons, were isolated in good yields via sterically induced radical elimination reactions. Addition of p-tolyl azide to complex 3 initiated reductive elimination of the neopentyl ligands to generate a putative imido species. The imido species was trapped by a second oxidative addition of chloride ligands to yield the titanium imido complex, [(dpp-BIAN)Ti[═N(4-C6H4Me)]Cl2 (4).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2016
To survey the noninnocence of bis(arylimino) acenaphthene (BIAN) ligands (L) in complexes with early metals, the homoleptic vanadium complex, [V(L)3 ] (1), and its monocation, [V(L)3 ]PF6 (2), were synthesized. These complexes were found to have a very rich electronic behavior, whereby 1 displays strong electronic delocalization and 2 can be observed in unprecedented valence tautomeric forms. The oxidation states of the metal and ligand components in these complexes were assigned by using spectroscopic, crystallographic, and magnetic analyses.
View Article and Find Full Text PDFThe neutral tris(semiquinonate) complex [Ti(dmp-BIAN(isq))(3)] [dmp-BIAN(isq) = N,N'-bis(3,5-dimethylphenylimino)acenaphthenesemiquinonate] was structurally, spectroscopically, and electrochemically characterized. Solid-state magnetism experiments reveal field-quenchable, enhanced temperature-independent paramagnetism (TIP). Density functional theory calculations employing the experimental geometry predicts a strong antiferromagnetic coupling, leading to an S = 0 ground state, but they also hint at spin frustration and concomitant close-lying, excited states, which cause the observed large TIP by admixture into the ground state.
View Article and Find Full Text PDFTitanium complexes of N,N'-bis(arylimino)acenaphthylene (BIAN) alpha-diimine ligands with varied steric profiles have been prepared. Coordination of the BIAN ligand derivatives to TiCl(4) afforded the adducts (dpp-BIAN)TiCl(4) (1a), (tmp-BIAN)TiCl(4) (1b), and (dmp-BIAN)TiCl(4) (1c) (dpp = 2,6-diisopropylphenyl; tmp = 2,4,6-trimethylphenyl; dmp = 3,5-dimethylphenyl). While the least sterically crowded complex 1c is robust toward loss of the diimine ligand, the dpp-BIAN and tmp-BIAN ligands are readily displaced by pyridine from the more crowded derivatives 1a and 1b, respectively.
View Article and Find Full Text PDF