Background: Precise localization of intracerebral implants in rodent brains is required for physiological and behavioral studies, particularly if targeting deep brain nuclei. Traditional histological methods, based on manual estimation through sectioning can introduce errors and complicate data interpretation.
Methods: Here, we introduce an alternative method based on recent advances in tissue-clearing techniques and light-sheet fluorescence microscopy.
Prior adversity increases susceptibility to subsequent stressful events, but the causal underlying changes in brain circuitry are poorly understood. We harnessed unbiased whole-brain activity mapping to identify circuits that are functionally remodeled by prior adversity. This revealed that the anterior hypothalamic nucleus (AHN) displays heightened stress reactivity in previously stressed mice.
View Article and Find Full Text PDFBackground: Most smokers attempting to quit will quickly relapse to tobacco use even when treated with the most efficacious smoking cessation agents currently available. This highlights the need to develop effective new smoking cessation medications. Evidence suggests that positive allosteric modulators (PAM) and other enhancers of nicotinic acetylcholine receptor (nAChR) signaling could have therapeutic utility as smoking cessation agents.
View Article and Find Full Text PDFIn addition to their intrinsic rewarding properties, opioids can also evoke aversive reactions that protect against misuse. Cellular mechanisms that govern the interplay between opioid reward and aversion are poorly understood. We used whole-brain activity mapping in mice to show that neurons in the dorsal peduncular nucleus (DPn) are highly responsive to the opioid oxycodone.
View Article and Find Full Text PDFBehavioral neuroscience aims to provide a connection between neural phenomena and emergent organism-level behaviors. This requires perturbing the nervous system and observing behavioral outcomes, and comparing observed post-perturbation behavior with predicted counterfactual behavior and therefore accurate behavioral forecasts. In this study we present FABEL, a deep learning method for forecasting future animal behaviors and locomotion trajectories from historical locomotion alone.
View Article and Find Full Text PDFAversive stimuli activate corticotropin-releasing factor (CRF)-expressing neurons in the paraventricular nucleus of hypothalamus (PVN neurons) and other brain stress systems to facilitate avoidance behaviors. Appetitive stimuli also engage the brain stress systems, but their contributions to reward-related behaviors are less well understood. Here, we show that mice work vigorously to optically activate PVN neurons in an operant chamber, indicating a reinforcing nature of these neurons.
View Article and Find Full Text PDFDetermining the localization of intracerebral implants in rodent brain stands as a critical final step in most physiological and behaviroral studies, especially when targeting deep brain nuclei. Conventional histological approaches, reliant on manual estimation through sectioning and slice examination, are error-prone, potentially complicating data interpretation. Leveraging recent advances in tissue-clearing techniques and light-sheet fluorescence microscopy, we introduce a method enabling virtual brain slicing in any orientation, offering precise implant localization without the limitations of traditional tissue sectioning.
View Article and Find Full Text PDFSubstance use disorders (SUDs) induce widespread molecular dysregulation in the nucleus accumbens (NAc), a brain region pivotal for coordinating motivation and reward. These molecular changes are thought to support lasting neural and behavioral disturbances that promote drug-seeking in addiction. However, different drug classes exert unique influences on neural circuits, cell types, physiology, and gene expression despite the overlapping symptomatology of SUDs.
View Article and Find Full Text PDFDiseases associated with nicotine dependence in the form of habitual tobacco use are a major cause of premature death in the United States. The majority of tobacco smokers will relapse within the first month of attempted abstinence. Smoking cessation agents increase the likelihood that smokers can achieve long-term abstinence.
View Article and Find Full Text PDFCigarette smoking has long been recognized as a risk factor for type 2 diabetes (T2D), although the precise causal mechanisms underlying this relationship remain poorly understood. Recent evidence suggests that nicotine, the primary reinforcing component in tobacco, may play a pivotal role in connecting cigarette smoking and T2D. Extensive research conducted in both humans and animals has demonstrated that nicotine can elevate blood glucose levels, disrupt glucose homeostasis, and induce insulin resistance.
View Article and Find Full Text PDFObesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity.
View Article and Find Full Text PDFMicroalgae cultivation utilizes the energy of sunlight to reduce carbon dioxide (CO) for producing renewable energy feedstock. The commercial success of the biological fixation of carbon in a consistent manner depends upon the availability of a robust microalgae strain. In the present work, we report the identification of a novel marine Nannochloris sp.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2022
Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine.
View Article and Find Full Text PDFNeurons activated by learning have been ascribed the unique potential to encode memory, but the functional contribution of discrete cell types remains poorly understood. In particular, it is unclear whether learning engages specific GABAergic interneurons and, if so, whether they differ functionally from interneurons recruited by other experiences. Here, we show that fear conditioning activates a heterogeneous neuronal population in the medial prefrontal cortex (mPFC) that is largely comprised of somatostatin-expressing interneurons (SST-INs).
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
August 2022
Rates of obesity and obesity-associated diseases have increased dramatically in countries with developed economies. Substance use disorders (SUDs) are characterized by the persistent use of the substance despite negative consequences. It has been hypothesized that overconsumption of palatable energy dense food can elicit SUD-like maladaptive behaviors that contribute to persistent caloric intake beyond homeostatic need even in the face of negative consequences.
View Article and Find Full Text PDFNeuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits.
View Article and Find Full Text PDFStressful life events are ubiquitous and well-known to negatively impact mental health. However, in both humans and animal models, there is large individual variability in how individuals respond to stress, with some but not all experiencing long-term adverse consequences. While there is growing understanding of the neurobiological underpinnings of the stress response, much less is known about how neurocircuits shaped by lifetime experiences are activated during an initial stressor and contribute to this selective vulnerability versus resilience.
View Article and Find Full Text PDFHow neurons in the medial prefrontal cortex broadcast stress-relevant information to subcortical brain sites to regulate cocaine relapse remains unclear. The lateral habenula (LHb) serves as a “hub” to filter and propagate stress- and aversion-relevant information in the brain. Here, we show that chemogenetic inhibition of cortical inputs to LHb attenuates relapse-like reinstatement of extinguished cocaine seeking in mice.
View Article and Find Full Text PDFCocaine triggers gene splicing in brain reward circuits, but the mechanisms and importance of this response are unclear. In this issue of Neuron, Xu et al. (2021) show that the histone modification H3K36me3 marks genes spliced in response to cocaine and, using epigenome editing, establish a causal relationship between gene splicing and addiction-related behavioral responses.
View Article and Find Full Text PDFComparatively little is known about how new instrumental actions are encoded in the brain. Using whole-brain c-Fos mapping, we show that neural activity is increased in the anterior dorsolateral striatum (aDLS) of mice that successfully learn a new lever-press response to earn food rewards. Post-learning chemogenetic inhibition of aDLS disrupts consolidation of the new instrumental response.
View Article and Find Full Text PDFBackground: The habenula-pancreas axis regulates the stimulatory effects of nicotine on blood glucose levels and may participate in the emergence of type 2 diabetes in human tobacco smokers. This secondary analysis of young adults from the Human Connectome Project (HCP-YA) evaluated whether smoking status links the relationship between habenular volume and glycated hemoglobin (HbA1c), a marker of long-term glycemic control.
Methods: Habenula segmentation was performed using a fully-automated myelin content-based approach in HCP-YA participants and the results were inspected visually (n = 693; aged 22-37 years).
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion.
View Article and Find Full Text PDF