Publications by authors named "Kenny Erleben"

Background And Objectives: Finite element simulations are widely employed as a non-invasive and cost-effective approach for predicting outcomes in biomechanical simulations. However, traditional finite element software, primarily designed for engineering materials, often encountered limitations in contact detection and enforcement, leading to simulation failure when dealing with complex biomechanical configurations. Currently, a lot of model tuning is required to get physically accurate finite element simulations without failures.

View Article and Find Full Text PDF

Topological changes like sliding motion, sources and sinks are a significant challenge in image registration. This work proposes the use of the alternating direction method of multipliers as a general framework for constraining the registration of separate objects with individual deformation fields from overlapping in image registration. This constraint is enforced by introducing a collision detection algorithm from the field of computer graphics which results in a robust divide and conquer optimization strategy using Free-Form Deformations.

View Article and Find Full Text PDF

The renal vasculature, acting as a resource distribution network, plays an important role in both the physiology and pathophysiology of the kidney. However, no imaging techniques allow an assessment of the structure and function of the renal vasculature due to limited spatial and temporal resolution. To develop realistic computer simulations of renal function, and to develop new image-based diagnostic methods based on artificial intelligence, it is necessary to have a realistic full-scale model of the renal vasculature.

View Article and Find Full Text PDF

Purpose: Applying machine learning techniques to magnetic resonance diffusion-weighted imaging (DWI) data is challenging due to the size of individual data samples and the lack of labeled data. It is possible, though, to learn general patterns from a very limited amount of training data if we take advantage of the geometry of the DWI data. Therefore, we present a tissue classifier based on a Riemannian deep learning framework for single-shell DWI data.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) has become a severe global pandemic. Accurate pneumonia infection segmentation is important for assisting doctors in diagnosing COVID-19. Deep learning-based methods can be developed for automatic segmentation, but the lack of large-scale well-annotated COVID-19 training datasets may hinder their performance.

View Article and Find Full Text PDF

Background And Objective: population-based finite element analysis of hip joints allows us to understand the effect of inter-subject variability on simulation results. Developing large subject-specific population models is challenging and requires extensive manual effort. Thus, the anatomical representations are often subjected to simplification.

View Article and Find Full Text PDF

Background: State-of-the-art finite element studies on human jaws are mostly limited to the geometry of a single patient. In general, developing accurate patient-specific computational models of the human jaw acquired from cone-beam computed tomography (CBCT) scans is labor-intensive and non-trivial, which involves time-consuming human-in-the-loop procedures, such as segmentation, geometry reconstruction, and re-meshing tasks. Therefore, with the current practice, researchers need to spend considerable time and effort to produce finite element models (FEMs) to get to the point where they can use the models to answer clinically-interesting questions.

View Article and Find Full Text PDF

We investigate the accuracy of intensity-based deformable image registration (DIR) for tumor localization in liver stereotactic body radiotherapy (SBRT). We included 4DCT scans to capture the breathing motion of eight patients receiving SBRT for liver metastases within a retrospective clinical study. Each patient had three fiducial markers implanted.

View Article and Find Full Text PDF

Studying different types of tooth movements can help us to better understand the force systems used for tooth position correction in orthodontic treatments. This study considers a more realistic force system in tooth movement modeling across different patients and investigates the effect of the couple force direction on the position of the center of rotation (CRot). The finite-element (FE) models of human mandibles from three patients are used to investigate the position of the CRots for different patients' teeth in 3D space.

View Article and Find Full Text PDF

We present a novel approach to using Bounding Volume Hierarchies (BVHs) for collision detection of volumetric meshes for digital prototyping based on accurate simulation. In general, volumetric meshes contain more primitives than surface meshes, which in turn means larger BVHs. To manage these larger BVHs, we propose an algorithm for splitting meshes into smaller chunks with a limited-size BVH each.

View Article and Find Full Text PDF

Analysis of voice pathologies may require vocal fold models that include relevant features such as vocal fold asymmetric collision. The present study numerically addresses the problem of frictionless asymmetric collision in a self-sustained three-dimensional continuum model of the vocal folds. Theoretical background and numerical analysis of the finite-element position-based contact model are presented, along with validation.

View Article and Find Full Text PDF

In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion.

View Article and Find Full Text PDF