Publications by authors named "Kennie Shepherd"

The Department of Veterans Affairs (VA) initiative to enhance recruitment of diverse biomedical scientists from Historically Black Colleges and Universities (HBCUs) through the VA Career Development Program has provided a unique opportunity for HBCUs to partner with VA to strengthen diversity recruitment efforts. The Atlanta VA Health Care System and the Morehouse School of Medicine (MSM) enjoy a productive and growing interinstitutional collaboration. The partnership between the Atlanta VA and MSM provides the unique opportunity for MSM to increase research opportunities for faculty and students while providing a pipeline of diverse candidates for the Atlanta VA to enhance recruitment of diverse HCBU biomedical scientists.

View Article and Find Full Text PDF

We previously demonstrated that mice with reduced expression of the vesicular monoamine transporter 2 (VMAT2 LO) undergo age-related degeneration of the catecholamine-producing neurons of the substantia nigra pars compacta and locus ceruleus and exhibit motor disturbances and depressive-like behavior. In this work, we investigated the effects of reduced vesicular transport on the function and viability of serotonin neurons in these mice. Adult (4-6 months of age), VMAT2 LO mice exhibit dramatically reduced (90%) serotonin release capacity, as measured by fast scan cyclic voltammetry.

View Article and Find Full Text PDF

Inflammation in the aging brain increases risk for neurodegenerative disease. In humans, the regulator of G-protein signaling-10 (RGS10) locus has been associated with age-related maculopathy. Chronic peripheral administration of lipopolysaccharide in the RGS10-null mice induces nigral dopaminergic (DA) degeneration, suggesting that RGS10 modulates neuroimmune interactions and may influence susceptibility to neurodegeneration.

View Article and Find Full Text PDF

The transcription factors in the myocyte enhancer factor 2 (MEF2) family play important roles in cell survival by regulating nuclear gene expression. Here, we report that MEF2D is present in rodent neuronal mitochondria, where it can regulate the expression of a gene encoded within mitochondrial DNA (mtDNA). Immunocytochemical, immunoelectron microscopic, and biochemical analyses of rodent neuronal cells showed that a portion of MEF2D was targeted to mitochondria via an N-terminal motif and the chaperone protein mitochondrial heat shock protein 70 (mtHsp70).

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF), a cognate ligand for the tyrosine kinase receptor B (TrkB) receptor, mediates neuronal survival, differentiation, synaptic plasticity, and neurogenesis. However, BDNF has a poor pharmacokinetic profile that limits its therapeutic potential. Here we report the identification of 7,8-dihydroxyflavone as a bioactive high-affinity TrkB agonist that provokes receptor dimerization and autophosphorylation and activation of downstream signaling.

View Article and Find Full Text PDF

One of the greatest influenza pandemic threats at this time is posed by the highly pathogenic H5N1 avian influenza viruses. To date, 61% of the 433 known human cases of H5N1 infection have proved fatal. Animals infected by H5N1 viruses have demonstrated acute neurological signs ranging from mild encephalitis to motor disturbances to coma.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the loss of dopamine neurons in the substantia nigra pars compacta, culminating in severe motor symptoms, including resting tremor, rigidity, bradykinesia, and postural instability. In addition to motor deficits, there are a variety of nonmotor symptoms associated with PD. These symptoms generally precede the onset of motor symptoms, sometimes by years, and include anosmia, problems with gastrointestinal motility, sleep disturbances, sympathetic denervation, anxiety, and depression.

View Article and Find Full Text PDF

The vesicular monoamine transporter 2 (VMAT2) controls the loading of dopamine (DA) into vesicles and therefore determines synaptic properties such as quantal size, receptor sensitivity, and vesicular and cytosolic DA concentration. Impairment of proper DA compartmentalization is postulated to underlie the sensitivity of DA neurons to oxidative damage and degeneration. It is known that DA can auto-oxidize in the cytosol to form quinones and other oxidative species and that this production of oxidative stress is thought to be a critical factor in DA terminal loss after methamphetamine (METH) exposure.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease whose hallmark pathological features include a selective loss of dopaminergic neurons in the midbrain. Recent studies have described the activation of a stress-induced signal cascade, c-Jun N-terminal kinase (JNK)-mediated activation of c-Jun, and an increase in the expression of a downstream effector, cyclooxygenase 2 (COX-2), in postmortem PD brains. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which induces selective neuronal loss in the midbrain similar to that seen in PD, also induces JNK-mediated activation of c-Jun and generates a COX-2 response in C57BL/6J mice.

View Article and Find Full Text PDF

Free radical damage has been shown to play a significant role in the pathogenesis of a number of neurodegenerative diseases including Parkinson's disease. One model of experimental parkinsonism is the loss of substantia nigra cells following administration of MPTP. Previously, it has been shown that a number of inbred strains of mice have differential responses to this toxin, and this difference is dependent on glial cells.

View Article and Find Full Text PDF

Lysophosphatidylcholine (lyso-PTC) is formed by phospholipase A2 (PLA2) from phosphatidylcholine (PTC), that is produced through phosphatidylethanolamine (PTE) methylation. 1-Methyl-4-phenyl-pyridinium (MPP+), a Parkinson's disease (PD) inducing agent, and S-adenosylmethionine (SAM), a biological methyl donor, increase lyso-PTC formation and both induce PD-like changes in animal models. In the current study, we investigated the effect of lyso-PTC on the dopaminergic system to determine the modulating role of lyso-PTC in dopaminergic neurotransmission.

View Article and Find Full Text PDF

Excess methylation has been suggested to play a role in the pathogenesis of Parkinson's disease (PD), since the administration of S-adenosylmethionine (SAM), a biological methyl donor, induces PD-like changes in rodents. It was proposed that SAM-induced PD-like changes might be associated with its ability to react with the dopaminergic system. In the present study the effects of SAM on dopamine receptors and transporters were investigated using rats and cloned dopamine receptor proteins.

View Article and Find Full Text PDF

Our previous studies showed that S-adenosyl-methionine (SAM) induced Parkinson's disease-like changes in rat. It caused death to dopamine neurons in the substantia nigra, which appeared shrunken and fragmented, indicative of apoptosis-like changes (Charlton and Crowell [1995] Mol. Chem.

View Article and Find Full Text PDF