Publications by authors named "Kenneth W Wood"

Background: Patients with triple-negative breast cancer (TNBC) expressing the androgen receptor (AR) respond poorly to neoadjuvant chemotherapy, although AR antagonists have shown promising clinical activity, suggesting these tumors are AR-dependent. cAMP responsive element binding protein (CREB)-binding protein (CBP) and p300 are transcriptional co-activators for the AR, a key driver of AR+ breast and prostate cancer, and may provide a novel therapeutic target in AR+ TNBC.

Objectives: The aim of this study was to determine the therapeutic potential of FT-6876, a new CBP/p300 bromodomain inhibitor, in breast cancer models with a range of AR levels in vitro and in vivo.

View Article and Find Full Text PDF

Background: High mitotic activity is associated with the genesis and progression of many cancers. Small molecule inhibitors of mitotic apparatus proteins are now being developed and evaluated clinically as anticancer agents. With clinical trials of several of these experimental compounds underway, it is important to understand the molecular mechanisms that determine high mitotic activity, identify tumor subtypes that carry molecular aberrations that confer high mitotic activity, and to develop molecular markers that distinguish which tumors will be most responsive to mitotic apparatus inhibitors.

View Article and Find Full Text PDF

Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses.

View Article and Find Full Text PDF

Inhibition of mitotic kinesins represents a novel approach for the discovery of a new generation of anti-mitotic cancer chemotherapeutics. We report here the discovery of the first potent and selective inhibitor of centromere-associated protein E (CENP-E) 3-chloro-N-{(1S)-2-[(N,N-dimethylglycyl)amino]-1-[(4-{8-[(1S)-1-hydroxyethyl]imidazo[1,2-a]pyridin-2-yl}phenyl)methyl]ethyl}-4-[(1-methylethyl)oxy]benzamide (GSK923295; 1), starting from a high-throughput screening hit, 3-chloro-4-isopropoxybenzoic acid 2. Compound 1 has demonstrated broad antitumor activity in vivo and is currently in human clinical trials.

View Article and Find Full Text PDF

Centromere-associated protein-E (CENP-E) is a kinetochore-associated mitotic kinesin that is thought to function as the key receptor responsible for mitotic checkpoint signal transduction after interaction with spindle microtubules. We have identified GSK923295, an allosteric inhibitor of CENP-E kinesin motor ATPase activity, and mapped the inhibitor binding site to a region similar to that bound by loop-5 inhibitors of the kinesin KSP/Eg5. Unlike these KSP inhibitors, which block release of ADP and destabilize motor-microtubule interaction, GSK923295 inhibited release of inorganic phosphate and stabilized CENP-E motor domain interaction with microtubules.

View Article and Find Full Text PDF

Purpose: Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein, a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have shown a 9% response rate in patients with locally advanced or metastatic breast cancer and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities, or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer, we explored the activity of ispinesib alone and in combination with several therapies approved for the treatment of breast cancer.

View Article and Find Full Text PDF

Structural changes in the mitotic arrest deficient protein 2 (Mad2) have been proposed to be essential for spindle checkpoint function. Current models for checkpoint activation propose that a C-Mad2-Mad1 core complex at unattached kinetochores is required for the structural activation through a process involving the interaction of two Mad2 conformers: a closed conformer bound to Mad1 or Cdc20 and an open conformer unbound to these ligands. To gain a molecular understanding of the mechanisms that accelerate the structural transition between the open and closed Mad2 conformations, we constructed a unique in vitro homogeneous Mad2 activity assay that specifically reports C-Mad2-Cdc20 formation.

View Article and Find Full Text PDF

Cell cycle checkpoints have long been recognized as important nodes for regulating cell proliferation and maintaining genomic integrity. These checkpoints are often altered in cancer and represent promising points for therapeutic intervention. Until recently, direct targeting of the mitotic checkpoint has been an untapped area for cancer drug discovery.

View Article and Find Full Text PDF

KSP, also known as HsEg5, is a kinesin that plays an essential role in the formation of a bipolar mitotic spindle and is required for cell cycle progression through mitosis. Ispinesib is the first potent, highly specific small-molecule inhibitor of KSP tested for the treatment of human disease. This novel anticancer agent causes mitotic arrest and growth inhibition in several human tumor cell lines and is currently being tested in multiple phase II clinical trials.

View Article and Find Full Text PDF

The mitotic kinesin KSP (kinesin spindle protein, or Eg5) has an essential role in centrosome separation and formation of the bipolar mitotic spindle. Its exclusive involvement in the mitotic spindle of proliferating cells presents an opportunity for developing new anticancer agents with reduced side effects relative to antimitotics that target tubulin. Ispinesib is an allosteric small-molecule KSP inhibitor in phase 2 clinical trials.

View Article and Find Full Text PDF

Kinesin spindle protein (KSP), an ATPase responsible for spindle pole separation during mitosis that is present only in proliferating cells, has become a novel and attractive anticancer target with potential for reduced side effects compared to currently available therapies. We report herein the discovery of the first known ATP-competitive inhibitors of KSP, which display a unique activity profile as compared to the known loop 5 (L5) allosteric KSP inhibitors that are currently under clinical evaluation. Optimization of this series led to the identification of biphenyl sulfamide 20, a potent KSP inhibitor with in vitro antiproliferative activity against human cells with either wild-type KSP (HCT116) or mutant KSP (HCT116 D130V).

View Article and Find Full Text PDF

The Wiskott-Aldrich syndrome protein (WASP) and neural WASP (N-WASP) are key players in regulating actin cytoskeleton via the Arp2/3 complex. It has been widely reported that the WASP proteins are activated by Rho family small GTPase Cdc42 and that Rac1 acts through SCAR/WAVE proteins. However, a systematic study of the specificity of different GTPases for different Arp2/3 activators has not been conducted.

View Article and Find Full Text PDF

Several members of the kinesin family of microtubule motor proteins play essential roles in mitotic spindle function and are potential targets for the discovery of novel antimitotic cancer therapies. KSP, also known as HsEg5, is a kinesin that plays an essential role in formation of a bipolar mitotic spindle and is required for cell cycle progression through mitosis. We identified a potent inhibitor of KSP, CK0106023, which causes mitotic arrest and growth inhibition in several human tumor cell lines.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlfkr9n4buhef0jtmo9k7aac3t2cgfre8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once