Publications by authors named "Kenneth W Harder"

Throughout the last decades, mRNA vaccines have been developed as a cancer immunotherapeutic and the technology recently gained momentum during the COVID-19 pandemic. Recent promising results obtained from clinical trials investigating lipid-based mRNA vaccines in cancer therapy further highlighted the potential of this therapy. Interestingly, while the technologies being used in authorized mRNA vaccines for the prevention of COVID-19 are relatively similar, mRNA vaccines in clinical development for cancer vaccination show marked differences in mRNA modification, lipid carrier, and administration route.

View Article and Find Full Text PDF

Unlabelled: While immunotherapies such as immune checkpoint blockade and adoptive T-cell therapy improve survival for a subset of human malignancies, many patients fail to respond. Phagocytes including dendritic cells (DC), monocytes, and macrophages (MF) orchestrate innate and adaptive immune responses against tumors. However, tumor-derived factors may limit immunotherapy effectiveness by altering phagocyte signal transduction, development, and activity.

View Article and Find Full Text PDF

Myeloid cells are a highly heterogeneous group of innate immune cells which include a diverse collection of cell types and cell states. Distinct subsets can impact tumor progression differently, with conventional type 1 DCs important in protective anti-tumor immune responses, while immunosuppressive tumor-associated macrophages and myeloid-derived suppressive cells (MDSCs) play tumor-promoting roles. Deep phenotyping of myeloid cells using single-cell technologies such as mass cytometry provides the unprecedented opportunity to comprehensively characterize the underlying heterogeneity of myeloid cells.

View Article and Find Full Text PDF

A layer of mucus functions to segregate contents of the intestinal lumen from the intestinal epithelium. The MUC2 mucin is the primary constituent of intestinal mucus and plays critical protective roles against luminal microbes and other noxious agents. In this study, we investigated whether MUC2 helps maintain CD8 T cell tolerance toward intestinal luminal Ags by gavaging wild-type and mice with a model Ag and monitoring immune responses posttreatment.

View Article and Find Full Text PDF

Rationale: Monocytes are key effectors of the mononuclear phagocyte system, playing critical roles in regulating tissue homeostasis and coordinating inflammatory reactions, including those involved in chronic inflammatory diseases such as atherosclerosis. Monocytes have traditionally been divided into 2 major subsets termed conventional monocytes and patrolling monocytes (pMo) but recent systems immunology approaches have identified marked heterogeneity within these cells, and much of what regulates monocyte population homeostasis remains unknown. We and others have previously identified LYN tyrosine kinase as a key negative regulator of myeloid cell biology; however, LYN's role in regulating specific monocyte subset homeostasis has not been investigated.

View Article and Find Full Text PDF

Fibrosis is the result of dysregulated tissue regeneration and is characterized by excessive accumulation of matrix proteins that become detrimental to tissue function. In Crohn's disease, this manifests itself as recurrent gastrointestinal strictures for which there is no effective therapy beyond surgical intervention. Using a model of infection-induced chronic gut inflammation, we show that -deficient mice are protected from fibrosis; infected intestinal tissues display diminished pathology, attenuated collagen deposition, and reduced fibroblast accumulation.

View Article and Find Full Text PDF

Fibrosis is the result of dysregulated tissue regeneration and is characterized by excessive accumulation of matrix proteins that become detrimental to tissue function. In Crohn's disease, this manifests itself as recurrent gastrointestinal strictures for which there is no effective therapy beyond surgical intervention. Using a model of infection-induced chronic gut inflammation, we show that -deficient mice are protected from fibrosis; infected intestinal tissues display diminished pathology, attenuated collagen deposition and reduced fibroblast accumulation.

View Article and Find Full Text PDF

Mutations in gene that encodes SAP (SLAM-associated protein) result in X-linked lymphoproliferative disease (XLP), a rare primary immunodeficiency disease defined by exquisite sensitivity to the B-lymphotropic Epstein-Barr virus (EBV) and B cell lymphomas. However, the precise mechanism of how the loss of SAP function contributes to extreme vulnerability to EBV and the development of B cell lymphomas remains unclear. Here, we investigate the hypothesis that SAP is critical for CD8 T cell immune surveillance of antigen (Ag)-expressing B cells or B lymphoma cells under conditions of defined T cell receptor (TCR) signaling.

View Article and Find Full Text PDF

The Lyn tyrosine kinase governs the development and function of various immune cells, and its dysregulation has been linked to malignancy and autoimmunity. Using models of chemically induced colitis and enteric infection, we show that Lyn plays a critical role in regulating the intestinal microbiota and inflammatory responses as well as protection from enteric pathogens. Lyn(-/-) mice were highly susceptible to dextran sulfate sodium (DSS) colitis, characterized by significant wasting, rectal bleeding, colonic pathology, and enhanced barrier permeability.

View Article and Find Full Text PDF

Cancer is associated with immune dysfunction characterized by the presence of proinflammatory and immunosuppressive cells and factors that contribute to tumor growth and progression. Here we show that mammary tumor growth is associated with defects in hematopoiesis, leading to myeloproliferative-like disease (leukemoid reaction), anemia, and disruption of the bone marrow stem/progenitor compartment. The defects we characterized included impaired erythropoiesis, leukocytosis, loss of early progenitor cells in the bone marrow, and splenic extramedullary hematopoiesis.

View Article and Find Full Text PDF

Ab-mediated autoimmune disease is multifaceted and may involve many susceptibility loci. The majority of autoimmune patients are thought to have polymorphisms in a number of genes that interact in different combinations to contribute to disease pathogenesis. Studies in mice and humans have implicated the Lyn protein tyrosine kinase as a regulator of Ab-mediated autoimmune disease.

View Article and Find Full Text PDF

Phosphatidylinositol-3 kinase (PI3K) activity is essential for normal B-cell receptor (BCR)-mediated responses. To understand the mechanisms of PI3K regulation during B-cell activation, we performed a series of biochemical analysis on primary B cells, and found that activity of Src family tyrosine kinases (SFK) is crucial for the activation of PI3K following BCR ligation and this is regulated by the SFK Lyn. We show that the hyperresponsive phenotype of B cells lacking Lyn is predicated on significantly increased basal and inducible PI3K activity that correlates with the constitutive hypophosphorylation of PAG/Cbp (phosphoprotein associated with glycosphingolipid-enriched microdomains/Csk-binding protein), a concomitant reduction in bound Csk in Lyn(-/-) B cells and elevated levels of active Fyn.

View Article and Find Full Text PDF

The innate immune response is a first line of defense against invading pathogens; however, the magnitude of this response must be tightly regulated, as hyper- or suboptimal responses can be detrimental to the host. Systemic inflammation resulting from bacterial infection can lead to sepsis, which remains a serious problem with high mortality rates. Lyn tyrosine kinase plays a key role in adaptive immunity, although its role in innate immunity remains unclear.

View Article and Find Full Text PDF

Cathelicidin LL-37 is a multifunctional, immunomodulatory and antimicrobial host-defense peptide of the human immune system. Here, we identified the role of SFKs in mediating the chemokine induction activity of LL-37 in monocytic cells. LL-37 induced SFK phosphorylation; and chemical inhibitors of SFKs suppressed chemokine production in response to LL-37 stimulation.

View Article and Find Full Text PDF

The intraerythrocytic parasite Plasmodium -- the causative agent of malaria -- produces an inorganic crystal called hemozoin (Hz) during the heme detoxification process, which is released into the circulation during erythrocyte lysis. Hz is rapidly ingested by phagocytes and induces the production of several pro-inflammatory mediators such as interleukin-1beta (IL-1beta). However, the mechanism regulating Hz recognition and IL-1beta maturation has not been identified.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are a subset of T lymphocytes that are responsible for suppressing the function of other immune cells, and preventing potentially harmful autoimmune responses. Studies in autoimmune-prone mice and human autoimmune diseases have shown reduced Treg number or function as a causative factor for the apparent loss of tolerance that contributes to disease. We have found that Lyn-deficient mice, which develop high titers of autoantibodies with age, have a perturbed Treg compartment.

View Article and Find Full Text PDF
Article Synopsis
  • - RasGRP1 is crucial for the survival and differentiation of developing thymocytes in TCR-mediated signaling, but its role in the negative selection of autoreactive thymocytes is limited.
  • - RasGRP1(-/-) mice develop an activated and proliferating CD4 T cell population that shows signs of exhaustion, despite normal central tolerance and negative selection.
  • - The immune activation of RasGRP1(-/-) CD4 T cells is linked to a chronically immunocompromised environment, resulting in impaired immune responses and difficulties in pathogen clearance.
View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF)-D is a secreted glycoprotein that induces angiogenesis and lymphangiogenesis. It consists of a central domain, containing binding sites for VEGF receptor-2 (VEGFR-2) and VEGFR-3, and N- and C-terminal propeptides. It is secreted from the cell as homodimers of the full-length form that can be proteolytically processed to remove the propeptides.

View Article and Find Full Text PDF

We have shown previously that the Src family kinase Lyn is involved in differentiation signals emanating from activated erythropoietin (Epo) receptors. The importance of Lyn to red cell maturation has been highlighted by Lyn-/- mice developing anemia. Here we show that Lyn interacts with C-terminal Src kinase-binding protein (Cbp), an adaptor protein that recruits negative regulators C-terminal Src kinase (Csk)/Csk-like protein-tyrosine kinase (Ctk).

View Article and Find Full Text PDF

The Lyn tyrosine kinase is a unique member of the Src family of non-receptor protein tyrosine kinases whose principal role is to regulate signals through inhibitory receptors thereby promoting signal attenuation. Lyn is renowned for its role in B cell antigen receptor and FcepsilonRI signaling; however, it is becoming increasingly apparent that Lyn also functions in signal transduction from growth factor receptors including the receptors for GM-CSF, IL-3, IL-5, SCF, erythropoietin, CSF-1, G-CSF, thrombopoietin and Flt3 ligand. Numerous studies have implicated Lyn in growth factor receptor signal amplification, while a number also suggest that Lyn participates in negative regulation of growth factor signaling.

View Article and Find Full Text PDF

The etiology of asthma, a chronic inflammatory disorder of the airways, remains obscure, although T cells appear to be central disease mediators. Lyn tyrosine kinase has been implicated as both a facilitator and inhibitor of signaling pathways that play a role in allergic inflammation, although its role in asthma is unclear because Lyn is not expressed in T cells. We show in the present study that Lyn-/- mice develop a severe, persistent inflammatory asthma-like syndrome with lung eosinophilia, mast cell hyperdegranulation, intensified bronchospasm, hyper IgE, and Th2-polarizing dendritic cells.

View Article and Find Full Text PDF

Lyn, one of several Src-family tyrosine kinases in immune cells, is noted for its ability to negatively regulate signaling pathways through phosphorylation of inhibitory receptors, enzymes, and adaptors. Somewhat paradoxically, it is also a key mediator in several pathways of B cell activation, such as CD19 and CD180. Whether Lyn functions to promote or inhibit immune cell activation depends on the stimulus and the developmental state, meaning that the consequences of Lyn activity are context dependent.

View Article and Find Full Text PDF

The Lyn tyrosine kinase plays essential inhibitory signaling roles within hematopoietic cells by recruiting inhibitory phosphatases such as SH2-domain containing phosphatase-1 (SHP-1), SHP-2, and SH2-domain containing 5'-inositol phosphatase (SHIP-1) to the plasma membrane in response to specific stimuli. Lyn-deficient mice display a collection of hematopoietic defects, including autoimmune disease as a result of autoantibody production, and perturbations in myelopoiesis that ultimately lead to splenomegaly and myeloid neoplasia. In this study, we demonstrate that loss of Lyn results in a stem/progenitor cell-intrinsic defect leading to an age-dependent increase in myeloid, erythroid, and primitive hematopoietic progenitor numbers that is independent of autoimmune disease.

View Article and Find Full Text PDF

A role for Lyn kinase as a positive regulator of immunoglobulin (Ig)E-dependent allergy has long been accepted. Contrary to this belief, Lyn kinase was found to have an important role as a negative regulator of the allergic response. This became apparent from the hyperresponsive degranulation of lyn-/- bone marrow-derived mast cells, which is driven by hyperactivation of Fyn kinase that occurs, in part, through the loss of negative regulation by COOH-terminal Src kinase (Csk) and the adaptor, Csk-binding protein.

View Article and Find Full Text PDF

The type III transforming growth factor beta (TGFbeta) receptor (TbetaRIII) binds both TGFbeta and inhibin with high affinity and modulates the association of these ligands with their signaling receptors. However, the significance of TbetaRIII signaling in vivo is not known. In this study, we have sought to determine the role of TbetaRIII during development.

View Article and Find Full Text PDF