Publications by authors named "Kenneth V Halberg"

Tenebrionid beetles have been highly successful in colonising environments where water is scarce, underpinned by their unique osmoregulatory adaptations. These include a cryptonephridial arrangement of their organs, in which part of their renal/Malpighian tubules are bound to the surface of the rectum. Within the cryptonephridial tubules, an unusual cell type, the leptophragmata, plays a key physiological role underpinning water conservation.

View Article and Find Full Text PDF

The red flour beetle Tribolium castaneum has emerged as a powerful model in insect functional genomics. However, a major limitation in the field is the lack of a detailed spatio-temporal view of the genetic signatures underpinning the function of distinct tissues and life stages. Here, we present an ontogenetic and tissue-specific web-based resource for Tribolium transcriptomics: BeetleAtlas (https://www.

View Article and Find Full Text PDF

Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity.

View Article and Find Full Text PDF

Water is essential to life. Terrestrial insects lose water by evaporation from the body surface and respiratory surfaces, as well as in the excretory products, posing a challenge made more acute by their high surface-to-volume ratio. These losses must be kept to a minimum and be offset by water gained from other sources.

View Article and Find Full Text PDF

Transporting epithelia provide a protective barrier against pathogenic insults while allowing the controlled exchange of ions, solutes and water with the external environment. In invertebrates, these functions depend on formation and maintenance of 'tight' septate junctions (SJs). However, the mechanism by which SJs affect transport competence and tissue homeostasis, and how these are modulated by ageing, remain incompletely understood.

View Article and Find Full Text PDF

Beaven et al. introduce the insect cryptonephridial complex, a multi-organ system that is one of the most powerful water-extraction systems in nature.

View Article and Find Full Text PDF

Osmoregulation in insects is an essential process whereby changes in hemolymph osmotic pressure induce the release of diuretic or antidiuretic hormones to recruit individual osmoregulatory responses in a manner that optimizes overall homeostasis. However, the mechanisms by which different osmoregulatory circuits interact with other homeostatic networks to implement the correct homeostatic program remain largely unexplored. Surprisingly, recent advances in insect genetics have revealed several important metabolic functions are regulated by classic osmoregulatory pathways, suggesting that internal cues related to osmotic and metabolic perturbations are integrated by the same hormonal networks.

View Article and Find Full Text PDF

More than half of all extant metazoan species on earth are insects. The evolutionary success of insects is linked with their ability to osmoregulate, suggesting that they have evolved unique physiological mechanisms to maintain water balance. In beetles (Coleoptera)-the largest group of insects-a specialized rectal ("cryptonephridial") complex has evolved that recovers water from the rectum destined for excretion and recycles it back to the body.

View Article and Find Full Text PDF

Animals must adapt their dietary choices to meet their nutritional needs. How these needs are detected and translated into nutrient-specific appetites that drive food-choice behaviours is poorly understood. Here we show that enteroendocrine cells of the adult female Drosophila midgut sense nutrients and in response release neuropeptide F (NPF), which is an ortholog of mammalian neuropeptide Y-family gut-brain hormones.

View Article and Find Full Text PDF

The intestine is a central regulator of metabolic homeostasis. Dietary inputs are absorbed through the gut, which senses their nutritional value and relays hormonal information to other organs to coordinate systemic energy balance. However, the gut-derived hormones affecting metabolic and behavioral responses are poorly defined.

View Article and Find Full Text PDF

Animals maintain metabolic homeostasis by modulating the activity of specialized organs that adjust internal metabolism to external conditions. However, the hormonal signals coordinating these functions are incompletely characterized. Here we show that six neurosecretory cells in the Drosophila central nervous system respond to circulating nutrient levels by releasing Capa hormones, homologs of mammalian neuromedin U, which activate the Capa receptor (CapaR) in peripheral tissues to control energy homeostasis.

View Article and Find Full Text PDF

Maintaining internal salt and water balance in response to fluctuating external conditions is essential for animal survival. This is particularly true for insects as their high surface-to-volume ratio makes them highly susceptible to osmotic stress. However, the cellular and hormonal mechanisms that mediate the systemic control of osmotic homeostasis in beetles (Coleoptera), the largest group of insects, remain largely unidentified.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfljuhtvsd29m4ifoopsb75k80m4cboc5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once