Freshwater quality and ecosystem impairment associated with excess phosphorus (P) loadings have led to federally mandated P reduction for certain organic waste streams. Phosphorus reduction from livestock and poultry feeds such as corn ethanol distillers' grains (DGs) presents a centralized strategy for reducing P loss from animal manurein agriculturally intensive states, but little is known about the actual distribution and geospatial P contributions of DGs as animal feed. Here, a county-level flow network for corn ethanol DGs was simulated in the United States to elucidate opportunities for P reduction and the potential for nutrient trading between centralized sources.
View Article and Find Full Text PDFAnthropogenic discharge of excess phosphorus (P) to water bodies and increasingly stringent discharge limits have fostered interest in quantifying opportunities for P recovery and reuse. To date, geospatial estimates of P recovery potential in the United States (US) have used human and livestock population data, which do not capture the engineering constraints of P removal from centralized water resource recovery facilities (WRRFs) and corn ethanol biorefineries where P is concentrated in coproduct animal feeds. Here, renewable P (rP) estimates from plant-wide process models were used to create a geospatial inventory of recovery potential for centralized WRRFs and biorefineries, revealing that individual corn ethanol biorefineries can generate on average 3 orders of magnitude more rP than WRRFs per site, and all corn ethanol biorefineries can generate nearly double the total rP of WRRFs across the US.
View Article and Find Full Text PDF