Publications by authors named "Kenneth R Kort"

The advent and exponential growth of mobile computing has spurred greater emphasis on the adoption of III-V compound semiconductors in device architectures. The introduction of high charge carrier densities within InxGa1-xAs and the development of metrologies to quantitate the extent of doping have thus emerged as an urgent imperative. As an amphoteric dopant, Si begins to occupy anionic sites at high concentrations, thereby limiting the maximum carrier density that can be obtained upon Si doping of III-V semiconductors.

View Article and Find Full Text PDF

While much progress has been achieved in the shape-controlled synthesis of nanocrystals, chemical strategies to define morphology remain primarily empirical. Here, a mechanistic study of the influence of different coordinating ligands on the kinetics and thermodynamics of crystal growth during the preparation of GdOCl by the non-hydrolytic condensation of GdCl3 and Gd(O (i) Pr)3 is reported. Growth using oleylamine, octadecylamine, trioctylamine, and didodecylamine yields 2D nanosheets with approximately square cross sections, whereas growth in trioctylphosphine oxide yields larger and thicker platelets.

View Article and Find Full Text PDF

We present a Raman spectroscopy study of electron-phonon coupling in In0.53Ga0.47As epilayers doped via the sulfur-monolayer doping method.

View Article and Find Full Text PDF

Electrophoretic deposition has emerged as a versatile and precisely tunable approach for the rapid deposition of conformal thin films of colloidal nanocrystals. The electrophoretic deposition of phosphor particles has assumed special significance in recent years as a commercially viable means toward the fabrication of large-area, ultrathin high-resolution emissive display screens. Here, we demonstrate that the anisotropic shape of colloidal ligand-passivated GdOCl nanoplatelets enables their assembly with remarkable substrate alignment and a high packing density upon electrophoretic deposition.

View Article and Find Full Text PDF

We report here a novel synthetic route for the preparation of well-defined and faceted nanocrystals of ternary rare earth oxychlorides based on the ligand exchange and condensation of rare earth halides and alkoxides in the presence of coordinating solvents. Nanocubes, faceted 2D nanosheets, and nanodisk morphologies are obtained as a result of preferential growth along specific crystallographic directions dictated by the choice of the rare earth ion and the capping ligand. The synthetic approach reported here represents a unique low-temperature route for the preparation of LnOCl in the PbFCl matlockite phase.

View Article and Find Full Text PDF