Publications by authors named "Kenneth R Gratz"

Background: StrataGraft® (allogeneic cultured keratinocytes and dermal fibroblasts in murine collagen-dsat) is an FDA-approved viable bioengineered allogeneic cellularized construct for adult patients with deep partial-thickness burns requiring surgery. We characterized the structural and functional properties of StrataGraft to improve product understanding by evaluating extracellular matrix (ECM) molecule distribution and secreted protein factor expression in vitro.

Methods: ECM protein expression was determined using indirect immunofluorescence on construct cross sections using commercial antibodies against collagen III, IV, VI, laminin-332, and decorin.

View Article and Find Full Text PDF

Flexural deformation has been used for the biomechanical characterization of native and engineered cartilage and as a mechanical stimulus to induce alteration of cartilage shape during in vitro culture. Flexure is also a physiologically relevant mode of deformation for various cartilaginous structures such as the ears and nose, but a kinematic description of cartilage in flexure is lacking even for simple deformations. The hypothesis of this study was that tension-compression (T-C) nonlinearity of cartilage will result in asymmetrical strain distributions during bending, while a material with similar behavior in tension and compression, such as alginate, will have a more symmetrical distribution of strains.

View Article and Find Full Text PDF

Focal damage to articular cartilage is common in arthroscopy patients, and may contribute to progressive tissue degeneration by altering the local mechanical environment. The effects of a focal defect, which may be oriented at various orientations relative to the subchondral bone, on the dynamics of cartilage contact and deformation are unclear. The objective of this study was to elucidate the effect of experimental full thickness focal defects, oriented at 80 degrees or 100 degrees relative to the subchondral bone, on intratissue strain and surface sliding of opposing cartilage surfaces during compression and stress relaxation.

View Article and Find Full Text PDF

Focal damage to articular cartilage is commonly found in symptomatic knees and may contribute to patient discomfort and progressive cartilage degeneration. The objective of this study was to quantify changes in cartilage intra-tissue strain and sliding occurring near a focal defect. Pairs of human osteochondral blocks were compressed by 20% of the total cartilage thicknesses, and tissue deformation was recorded by video microscopy.

View Article and Find Full Text PDF

During joint articulation, the biomechanical behavior of cartilage not only facilitates load-bearing and low-friction, but also provides regulatory cues to chondrocytes. Elucidation of cartilage kinematics under combined compression and shearing conditions clarifies these cues in health and disease. The objectives of this study were to elucidate the effects of lubricant, tissue degeneration, and stress relaxation duration on cartilage shear kinematics during articulation.

View Article and Find Full Text PDF

Objective: To characterize cartilage shear strain during articulation, and the effects of lubrication and degeneration.

Methods: Human osteochondral cores from lateral femoral condyles, characterized as normal or mildly degenerated based on surface structure, were selected. Under video microscopy, pairs of osteochondral blocks from each core were apposed, compressed 15%, and subjected to relative lateral motion with synovial fluid (SF) or phosphate buffered saline (PBS) as lubricant.

View Article and Find Full Text PDF

Interactions between contacting biological surfaces may play significant roles in physiological and pathological processes. Theoretical models have described some special cases of contact, using one or more simplifying assumptions. Experimental quantification of contact could help to validate theoretical analyses.

View Article and Find Full Text PDF

Failure to restore the mechanical properties of tissue at the repair site and its interface with host cartilage is a common problem in tissue engineering procedures to repair cartilage defects. Quantitative in vitro studies have helped elucidate mechanisms underlying processes leading to functional biomechanical changes. However, biomechanical assessment of tissue retrieved from in vivo studies of cartilage defect repair has been limited to compressive tests.

View Article and Find Full Text PDF

Cartilage functions as a low-friction, wear-resistant, load-bearing tissue. During a normal gait cycle, one cartilage surface rolls and slides against another, all the while being loaded and unloaded. The durability of the tissue also makes for an impressive material to study.

View Article and Find Full Text PDF