This article discusses the contention in the commented-upon paper that Brillouin precursors generated by 5G New Radio (5G NR) and other cellular systems are a possible cause of tissue damage at deeper layers of tissue than the power penetration depth of the carrier frequency. The original theory for Brillouin precursors from pulsed radiofrequency signals (RF-EMF) and speculation about their possible health effects dates back to the 1990's and was based on studies of the propagation of very short (nanosecond) ultrawide-bandwidth RF pulses through water. This assumption is not correct for cellular telephone signals due to their narrow bandwidth.
View Article and Find Full Text PDFPurpose: This review considers issues related to interpreting the mixed legacy of >300 papers published during the past three decades on possible genotoxic effects of exposure of human and animal tissues to radiofrequency electromagnetic fields (RF-EMF). The main paper reviews the evolution of consensus guidelines for genotoxicity testing and the increasing emphasis on systematic reviews for evaluation of scientific studies for use in health risk assessments. An Appendix considers some issues in assessing the bioeffects literature by examining a subset of genotoxicity publications that employed the comet assay.
View Article and Find Full Text PDFInt J Environ Res Public Health
February 2022
This commentary, by three authors with an aggregate experience of more than a century in technology and health and safety studies concerning radiofrequency (RF) energy, asks what has been learned over the past 75 years of research on radiofrequency and health, focusing on technologies for exposure assessment and dosimetry. Research programs on health and safety of RF exposure began in the 1950s, initially motivated by occupational health concerns for military personnel, and later to address public concerns about exposures to RF energy from environmental sources and near-field exposures from RF transmitting devices such as mobile phones that are used near the body. While this research largely focused on the biological effects of RF energy, it also led to important improvements in exposure assessment and dosimetry.
View Article and Find Full Text PDFThis commentary considers research needs for radiofrequency (RF) energy above 6 GHz, including in the "high band" of 5G New Radio (NR) communications systems that exists just beneath the mm-wave band (30-300 GHz). As of late 2020, approximately 100 RF bioeffects studies have been published involving exposures above 6 GHz, encompassing a wide range of exposure levels and frequencies. A majority of these studies report statistically significant effects of exposure, many at exposures within international safety limits.
View Article and Find Full Text PDFTwo major sets of exposure limits for radiofrequency (RF) radiation, those of the International Commission on Nonionizing Radiation Protection (ICNIRP 2020) and the Institute of Electrical and Electronics Engineers (IEEE C95.1-2019), have recently been revised and updated with significant changes in limits above 6 GHz through the millimeter wave (mm-wave) band (30-300 GHz). This review compares available data on thermal damage and pain from exposure to RF energy above 6 GHz with corresponding data from infrared energy and other heat sources and estimates safety factors that are incorporated in the IEEE and ICNIRP RF exposure limits.
View Article and Find Full Text PDFInternational guidelines/standards for human protection from electromagnetic fields have been revised recently, especially for frequencies above 6 GHz where new wireless communication systems have been deployed. Above this frequency a new physical quantity 'absorbed/epithelial power density' has been adopted as a dose metric. Then, the permissible level of external field strength/power density is derived for practical assessment.
View Article and Find Full Text PDFThis study examines the nonuniform exposure to the cornea from incident millimeter waves at 94-100 GHz. Two previous studies measured temperature increases in the rhesus cornea exposed to brief (1-6 s) pulses of high-fluence millimeter waves (94 GHz), one of which also estimated thresholds for corneal damage (reported as ED50, the dose resulting in a visible lesion 50% of the time). Both studies noted large variations in the temperature increase across the surface of the cornea due to wave interference effects.
View Article and Find Full Text PDFLandbird vital rates, such as productivity and adult survivorship, can be estimated by modeling mist-netting capture data. The proportion in which an adult breeding bird is 1 year of age (a "yearling"), however, has been studied only minimally in a few landbird species. Here we relate yearling proportion to habitat-structure covariates, including reclamation age, in a boreal forest landbird community.
View Article and Find Full Text PDFOil sands developments release acidifying compounds (SO and NO) with the potential for acidifying deposition and impacts to forest health. This article integrates the findings presented in the Oil Sands Forest Health Special Issue, which reports on the results of 20 years of forest health monitoring, and addresses the key questions asked by WBEA's Forest Health Monitoring (FHM) Program: 1) is there evidence of deposition affecting the environment?, 2) have there been changes in deposition or effects over time?, 3) do acid deposition levels require management intervention?, 4) what are major sources of deposited substances? and 5) how can the program be improved? Deposition of sulphur, nitrogen, base cations (BC), polycyclic aromatic compounds and trace elements decline exponentially with distance from sources. There is little evidence for acidification effects on forest soils or on understory plant communities or tree growth, but there is evidence of nitrogen accumulation in jack pine needles and fertilization effects on understory plant communities.
View Article and Find Full Text PDFThe expansion of oil sands resource development in the Athabasca Oil Sands Region in the early 1990's led to concerns regarding the potential ecological and health effects of increased emissions and deposition of acidic substances. Conditions attached to a 1994 approval for an oil sands facility expansion led to the creation of the Wood Buffalo Environmental Association, and its Terrestrial Environmental Effects Monitoring committee. This multi-stakeholder body was tasked with development and operation of an environmental (forest health) monitoring program for the detection of ecological responses to atmospheric emissions and deposition.
View Article and Find Full Text PDFIn September 2017, the U.S. Food and Drug Administration (FDA) made a striking announcement.
View Article and Find Full Text PDFThe emerging 5 G wireless devices working at frequencies above 6 GHz are expected to have antenna arrays formed by dipoles, slots, patches or their combination. At lower frequencies, the accepted criteria for exposure compliance is stated in terms of specific absorption rate. IEEE and ICNIRP are adopting epithelial or transmitted power density (PD through body surface) as the dosimetric reference for frequencies above 6 GHz, which entails the measurement of free space PD.
View Article and Find Full Text PDFThis review/commentary addresses recent thermal and electromagnetic modeling studies that use image-based anthropomorphic human models to establish the local absorption of radiofrequency energy and the resulting increase in temperature in the body. The frequency range of present interest is from 100 MHz through the transition frequency (where the basic restrictions in exposure guidelines change from specific absorption rate to incident power density, which occurs at 3-10 GHz depending on the guideline). Several detailed thermal modeling studies are reviewed to compare a recently introduced dosimetric quantity, the heating factor, across different exposure conditions as related to the peak temperature rise in tissue that would be permitted by limits for local body exposure.
View Article and Find Full Text PDFMigratory species are rapidly declining but we rarely know which periods of the annual cycle are limiting for most species. This knowledge is needed to effectively allocate conservation resources to the periods of the annual cycle that best promote species recovery. We examined demographic trends and response to human footprint for Canada warblers (Cardellina canadensis), a threatened Neotropical migrant, using range-wide data (1993-2016) from the Monitoring Avian Productivity and Survivorship (MAPS) program on the breeding grounds.
View Article and Find Full Text PDFExposures to radiofrequency (RF) energy above 6 GHz are characterized by shallow energy penetration, typically limited to the skin, but the subsequent increase in skin temperature is largely determined by heat transport in subcutaneous layers. A detailed analysis of the energy reflection, absorption, and power density distribution requires a knowledge of the properties of the skin layers and their variations. We consider an anatomically detailed model consisting of 3 or 4 layers (stratum corneum, viable epidermis plus dermis, subcutaneous fat, and muscle).
View Article and Find Full Text PDF"The future of medicine is in your smartphone," proclaimed an eminent medical researcher in a 2015 Wall Street Journal essay. In a sense, that future has already arrived, judging from the proliferation of apps and medical devices now connected to smartphones. One 2015 industry study identified more than 165,000 health-related smartphone apps available from the Google Play Store and Apple iTunes.
View Article and Find Full Text PDF